
A Neural Network Guided Genetic Algorithm for

Flexible Flow Shop Scheduling Problem with

Sequence Dependent Setup Time

by

Syeda Manjia Tahsien

A Thesis

presented to

The University of Guelph

In partial fulfilment of requirements

for the degree of

Master of Applied Science

in

Engineering + AI

Guelph, Ontario, Canada

© Syeda Manjia Tahsien, December, 2020



ABSTRACT

A NEURAL NETWORK GUIDED GENETIC ALGORITHM FOR

FLEXIBLE FLOW SHOP SCHEDULING PROBLEM WITH

SEQUENCE DEPENDENT SETUP TIME

Syeda Manjia Tahsien Advisor:

University of Guelph, 2020 Professor F.M. Defersha

This thesis presents a discriminating technique and clustering ordered per-

mutation using Adaptive Resonance Theory (ART) and potential applications in

the ART-guided Genetic Algorithm (GA). In this regard, we have introduced two

novel techniques for converting ordered permutations to binary vectors to cluster

them using ART. The proposed binary conversion methods are evaluated under

varying parameters, and problem sizes with the performance analysis of ART-1

and Improved-ART-1. The numerical results indicate the superiority of one of

the proposed binary conversion techniques over the other and Improved-ART-1

over ART-1. Finally, we develop Improved-ART-1 Neural Network guided GA to

solve a flexible flow show scheduling problem (FFSP) with sequence dependant

setup time. Numerical examples show that ANN-guided GA outperforms the

pure GA in solving several large size FFSP problems.

Keywords: Adaptive Resonance Theory; ANN-Guided Genetic Algorithm; Binary

Conversion Method; Flexible Flow Shop; Genetic Algorithm; Neural Network; Or-

dered Permutations.
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Chapter 1

Introduction

Over the years, various sophisticated tools have been developed in order to help

the human race. Digital computers and smart machines are the tools among

those that have been dedicated to making human life easier and more comfortable.

Now, we are more interested in making computers which can think and act like us,

which indicates computers will be given intelligence that will artificially mimic

our thoughts in its acts. John McCarthy has introduced the term “Artificial

Intelligence (AI)” in 1956, and by using these words, he wanted to indicate a

smart tool which is a combination of science and engineering and will be used for

the betterment of the people. Since then, the research in AI has been flourishing

at a rocket speed in every sector of our daily life. In simple words, AI is the

branch of that science which mimics human intelligence in a machine. There are

a couple of reasons for which AI has been adopted in almost every field by us,

and these include:

� Provide better results.

� Create new opportunities for existing products.

� Optimize the system’s operation.

1



Chapter 1. Introduction

� Creates competition among developers, for which business becomes more

dynamic.

� Reduce operational conflicts and speed up the operational process.

AI can be classified into two types. Type 1 includes narrow/weak AI and

strong AI, whereas type 2 consists of limited memory, reactive machines, the

theory of mind, and self-awareness. However, the word AI does not refer to

any specific methodology or technique. AI can be compared as a big umbrella

which covers machine learning (ML) (e.g., deep learning, supervised and unsu-

pervised learning, predictive analytics, etc.), natural language processing (NLP)

(e.g., translation, classification, clustering, information extraction, etc.), expert

systems, vision, robotics. Every category is used in different applications using

various algorithms and intelligent systems such as: the neural network (NN),

Evolutionary algorithms, simulated annealing, computational intelligence, fuzzy

logic, etc. In this thesis, we have studied one of the kinds of NN.

The NN concept comes from our brain where billions of neurons are in-

terconnected and can handle difficult and complex tasks such as movement and

control of different bodies, vision and face recognition, planning for body motion,

etc. This human brain’s neuron network has inspired the researchers to develop

an artificial neural network (ANN) (Gruau et al., 1996; de Garis, 1994). ANN

represents the models with nonlinear statistical data that mimic the role of the

human brain’s neurons (Jain et al., 1996). McCullooch and Pitts initially inves-

tigated ANN in the 1940s (McCulloch and Pitts, 1943). The basic ANN model

includes three layers, i.e., the input layer, hidden layer, and output layer. Like

the human brain, neurons in ANN take the input and passes the information to

another neuron. These neurons are connected by links, and each link has a weight

to control the signal between the nodes/neurons. Moreover, these neurons are

2
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capable of learning where they can change their weights. Figure 1.1 illustrates a

basic structure of an ANN (Tahsien et al., 2020).

Figure 1.1: A basic structure of an ANN.

Over the last three decades, ANN has been adopted in engineering, au-

tomotive, medicine, economics, aerospace, energy sector, and many other fields

(Yang et al., 2008; Kumar et al., 2013; Alippi et al., 2003). Additionally, ANN has

also attracted the manufacturing engineers’ attention for resolving the schedul-

ing problems (Hopfield and Tank, 1985; Agarwal et al., 2006; Kasap and Agar-

wal, 2012; Huang and Gao, 2020). Research on scheduling is one of the oldest

disciplines in the manufacturing industry, started in the 1950s (Yu and Liang,

2001). Since then, mathematical modeling, dynamic programming, branch, and

bound method have been studied for manufacturing scheduling problems to op-

timize the outcome. On the other hand, this manufacturing scheduling becomes

a young discipline because of new production and management technologies in

this twenty-first century, especially in the Industry 4.0 (Zhang et al., 2019). Tra-

ditional scheduling problems are considered centralized or some semi-distributed

scheduling. In contrast, Industry 4.0 deals with advanced-smart distribution and

optimization manufacturing technologies such as Digital Twin, Big Data, Inter-

net of Things (IoT), Mass Customization, Cyber Physics System (CPS), Artificial
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Intelligence (AI), Cloud Computing, Deep Learning, etc. Considering the revo-

lution of Industry 4.0, the Genetic Algorithm (GA) and Neural Network (NN)

have gained much attention in manufacturing scheduling problems. Therefore,

this thesis’s primary research has been focused on GA, NN, and hybridization of

these two approaches in a manufacturing scheduling problem.

1.1. Manufacturing Scheduling

Scheduling generally refers to determining the completion time, date, and way of

completing the task where all operations have been finished within the shortest

possible time. The need for scheduling becomes essential in diverse fields such

as manufacturing industries, supply chain processes, logistics, management, etc.

Machines and operations are the two main resources of the manufacturing envi-

ronment. It is necessary to link these two resources to get the optimum results

from the production. Therefore, scheduling is one of the most critical factors in

managing and planning the manufacturing process to determine a process that

optimizes the production outcomes. Machine scheduling problem typically con-

sists of operation sequencing and allocation problem, and this machine scheduling

problem can be classified as (i) machine environment (shop scheduling); (ii) job

characteristics; (iii) performance measures. The following subsections present a

detailed description of the machine environment/shop scheduling types where our

thesis work mainly evolves the flexible flow shop scheduling problem. Table 1.1

shows different types of shops that are considered in manufacturing scheduling.
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Table 1.1: Variants of shop scheduling in manufacturing industry (Azadeh et al.,

2019; Bhatt and Chauhan, 2016; Rahmani Hosseinabadi et al., 2019).

Shop types Features

Single machine One at a time

Parallel machine Identical (Total identical and partial)

Uniform

Unrelated

Job shop Multi-direction

Flow shop Uni-direction

Open shop No direction

The scheduling problems in manufacturing are classified into four categories,

which are commonly used in theoretical computer science. “P” presents easy

problems, “NP” represents medium, “NP-complete” presents hard, and “NP-

hard” defines the hardest and complex problems.

1.1.1. Single Machine Scheduling Problem

Single machine is one of the most commonly researched problems in the classical

scheduling problem due to its extensive range of applications in the real world (Lu

et al., 2014). Single machine scheduling problem (SMSP) refers to the process

where a group of assigned tasks is performed in a single machine. The initial work

of SMSP was accomplished by Jackson in the 1950’s (Jackson, 1955; Smith, 1956).

A detailed survey has been conducted on the theory and various applications of

single machine scheduling problem by Pinedo (2012), Abdul-Razaq et al. (1990),

and Yen and Wan (2003). When the assigned work becomes complicated, the

entire single machine job is further subcategorized into several single machine

jobs.
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1.1.2. Parallel Machine Scheduling Problem

The parallel machine scheduling problem (PMSP) is defined as assigning several

tasks/jobs to a number of parallel machines to get the optimum outcome. The-

oretically, parallel machine is a complex form of single machine problem and a

special scheduling problem of flexible flow shop. The application area of PMSP

has a wide range of application areas, e.g., semiconductor area (Chien and Chen,

2007) and electronic manufacturing industries (Kaczmarczyk, 2011). PMSP can

be further divided into identical, uniform, and unrelated parallel machines. Fig-

ure 1.2 illustrates a simple schematic diagram of PSMP.

Figure 1.2: Schematic diagram of a parallel machine scheduling problem.

1.1.3. Job Shop Scheduling Problem

Job shop scheduling problem (JSP/JSSP) is one of the kinds of NP-hard opti-

mization problems where a set of various jobs consisting of different operations

are processed in machines at a particular time to minimize the makespan (overall

completion time is known as makespan). In job shop scheduling, the machines’

sequence for processing each job is different where there are no specific first and
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final operations for each job. Figure 1.3 shows a general workflow of a job shop

scheduling problem.

Figure 1.3: Schematic presentation of a simple job shop scheduling.

The commonly used JSP type is known as flexible JSP (FJSP), which is

the complex and more advanced form of JSP. Recently, most of the optimization

scheduling algorithms target JSP and FJSP, though their structure is different

from the real-world industrial system. It is found from the literature that Baker

and Trietsch (2009) introduced the FJSP for the optimization of the manufactur-

ing scheduling problem.

1.1.4. Flow Shop Scheduling Problem

Flow shop is a unidirectional model where each given job is processed in a set of

machines in identical order. In flow shop scheduling, each job can be processed

at most by a machine, and each machine can handle only one job at a given time.

Flow shop has been commonly used in mechanical manufacturing and industrial

productions where jobs need to be processed incessantly in machines at a time

in series (Grabowski and Pempera, 2007). Flow shop is a typical NP-hard type

problem where it is difficult to find the global optima at polynomial time. Figure

1.4 illustrates a simple flow shop scheduling diagram.
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Figure 1.4: Schematic diagram of a simple flow shop scheduling problem.

Since 1954, researchers have been investigating flow shop scheduling prob-

lems (FSP) in real-world systems (Johnson, 1954). Though the mechanism of

flow shop scheduling seems like an assembly line; however, there is a difference

between them. Firstly, the assembly line only deals with a standard product,

whereas FSP can process multiple jobs in multiple machines at a time. Secondly,

it is necessary for a product to go through all the machines in the assembly line,

whereas a job does not have to visit all the machines in FSP. Lastly, a machine

can handle a job independently in FSP without depending on the previous stage,

whereas one machine depends on the previous machine in assembly line schedul-

ing.

The classical flow shop is known as a flexible flow shop (FFS/HFS). FFS

deals with multiple workstations at one stage to minimize the makespan. FFS

is widely considered in the electronics industry, chemical industry, automobiles

sectors, etc. The number of available workstations at each stage is the same in

both flow shop and flexible flow shop, where this limitation can be avoided using

hybrid flow shop scheduling (HFS) (Agarwal et al., 2011). In HFS, there are series

of operation stages where jobs can be handled parallelly by multiple machines at

a time.
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1.1.5. Open Shop Scheduling Problem

Open shop scheduling problem (OSSP) is a non-directional NP-hard problem

where each given set of tasks must be processed at a given period by a specific

machine at a time. However, there is no operation sequence for the machines

that are determined arbitrarily, i.e., each machine can handle one job at a time,

and each job cannot be processed by more than one machine at a time. The

aim of using such technique is to determine the schedule of the machine where

it will be found the starting time of each job, which will reduce the overall job

completion time. Gonzalez and Sahni (Gonzalez and Sahni, 1976) introduced

this OSSP in industrial applications. For example, consider there is n number

of jobs which will be processed by m number of machines. If all the n number

of jobs are handled in a fixed route by m number of machines, it will be a flow

shop scheduling problem. Moreover, if each job is handled by a specific route by

m number of machines, it will be a job shop type problem. Now, if these job

processing routes are not deterministic, then this is called OSSP.

1.2. Scheduling Optimization Algorithms

Optimization can be defined in various ways in different application fields. How-

ever, optimization is generally defined as a technique to use the system resources

in order to identify the best outcomes in an efficient and effective way. Literature

says that optimization techniques utilize different algorithms using accurate, ef-

fective, and real time information from surroundings to speed up the process of

decision making and to ensure the best outcome (Johnson et al., 1993; Coello,

1999). Optimization includes two most important components i.e., analysis and

modeling of a given problem. Since last century, researchers have been focusing

on modeling for optimization techniques in real world. However, over the last

three decades, researchers are also considering different algorithms and analysis
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methods in this regard (Fu, 1994). Algorithms that are used in optimization

techniques are known as optimization algorithms. Figure 1.5 illustrates a general

classification of optimization algorithms.

Figure 1.5: A flow chart of different optimization algorithms.

Optimization algorithms are typically classified into deterministic and stochas-

tic algorithms. Deterministic algorithms deal with the global solution using a fi-

nite number of steps to optimize the outcomes of a problem, whereas the stochas-

tic method is used for global optimization problems with bound-constrained and

unconstrained. Stochastic methods are incorporated in order to find only one

global solution, and it avoids repetitive the same outcome from global solutions.

When clustering is required for any problem set, the stochastic methods become

the best fit for the optimization technique over the deterministic methods. The

stochastic algorithm is further divided into two main categories, such as heuristic

and metaheuristic. The following subsection will describe these two stochastic
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types of algorithms and their classification. Besides, Figure 1.6 shows the trend

of using different algorithms as optimization techniques since 2013. In this fig-

ure, GA represents genetic algorithm; NN is the neural network; SFLA is shuffled

frog-leaping algorithm; GWO stands for grey wolf optimization; PWSW presents

particle swarm optimization; SA is simulated annealing; MOEA is multiobjective

evolutionary algorithms; NSGA-II stands for non-dominated sorting genetic algo-

rithm (data taken from different sources, e.g., Engineering village, IEEE Xplore,

Springer, and others).

Figure 1.6: Different algorithms used in optimization problem since 2013.

1.2.1. Heuristic Algorithm

The heuristic is one of the kinds of stochastic algorithms widely used to find short

term solutions for scheduling problems. The main advantage of adopting a heuris-

tic algorithm in scheduling problems is that it can give a fast and inexpensive

solution to the issue (Taskin, 2019; Frankovič and Budinská, 2000). Moreover,

it is easy to understand and implement in the process. However, sometimes this

quick response is not practical to use in the real field (Frankovič and Budinská,
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2000).

1.2.2. Metaheuristic Algorithm

Over the last three decades, various optimization algorithms have been introduced

considering the basic guidelines of heuristic in order to find a fast and feasible

solution for scheduling problems, which are commonly known as metaheuristic

algorithms. It is the up-gradation of heuristic algorithms, which is a repetitive

method to find the optimal solution, which is also called the modern heuristic

method. The common features of the metaheuristic algorithms are:

� Metaheuristic algorithms are considered to find the near-optimal solution

of any problem.

� Metaheuristic algorithms are not for any specific problem.

� Metaheuristic algorithms are the stochastic process.

� Metaheuristic algorithms are constituted in order to use in local search as

well all in any complex learning systems.

� Metaheuristics can direct the search algorithms into any favorable regions.

� The results of metaheuristics can be easily matched with the simulated

results, making it more feasible for any scheduling problem to validate.

Metaheuristic algorithms can be classified into single-point/trajectory-based

and population-based algorithms (see Fig.1.5). Single point/trajectory-based

metaheuristic algorithm falls into Hill Climbing, Simulated Annealing, Tabu

Search algorithms. Population-based metaheuristic algorithms are further di-

vided into Evolutionary algorithms, swarm algorithms, Neural networks, Fuzzy

programming, etc. In this thesis, the research is focused on the Genetic algorithm

(GA), which is a kind of Evolutionary metaheuristic algorithm.
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1.2.3. Evolutionary Algorithm

Evolutionary algorithms are stochastic meta-heuristic algorithm which is encour-

aged by the biological evolution. The main idea behind these algorithms is to

utilize the randomness with mating characteristics and transmutation to evolve

our required optimal solution. When there is a bundle of solutions and a need

to find a near-optimal solution, then evolutionary algorithms come first in the

race to be considered. Evolutionary algorithms are widely used in scheduling

problems, image processing, knapsack problems, routing, etc. Evolutionary al-

gorithms include Genetic algorithm (GA), Differential Evolution (DE), Evolu-

tionary Strategy (ES), Genetic Programming (GP), Harmony search. Among

different evolutionary algorithms, GA has attracted the researchers most, which

is also noted from Fig.1.5. Therefore, it motivates us to do a literature survey and

research on GA techniques in the proposed hybrid approach for manufacturing

scheduling problems.

1.3. Objectives

Manufacturing scheduling problems are very complex and diverse in nature, and

there is no one method that could solve them efficiently. Machine learning (ML)

based genetic algorithm can be a practical approach to handle the complexity of

scheduling problems by utilizing the learning ability of ML and the global search

capability of genetic algorithm. A genetic algorithm (GA) is an optimization

technique that works based on the principles of evolution and natural selection.

It has been applied to solve a wide range of problems, both having continuous

and/or discrete decision variables. The selection process in a GA is accomplished

by assigning a selection probability to each individual solution proportional to

the measure of goodness of the solution (fitness function). However, in discrete
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optimization, the goodness of a solution can be significantly altered and dete-

riorate by a slight perturbation of the variables. In that case, a solution that

can be easily improved to provide a good solution can be discarded by the GA.

Hence, discriminating solutions merely based on fitness function may result in

a poor convergence of the GA as many solutions that can be easily altered to

good solutions can potentially be rejected by the search process. In this scenario,

characterizing solutions based on genotype information, in addition to the phe-

notype, can be a promising approach. The overall research focus is to integrate

the ANN, especially adaptive resonance theory (ART), with GA in solving the

selected scheduling problem with the objective of improving the convergence be-

havior of the genetic algorithm and the quality of the final solution. The main

objective of using ART as NN in the current work are: (i) ART does not forget

the previous result, i.e., ART can adopt and learn well at any stage of operation

without forgetting old result, which is very useful for any applications; (ii) it is al-

ways open for new learning; (iii) Other NNs need time-consuming training based

on advanced knowledge, and it is tough to introduce new data once its training

is completed which can be overcome by considering ART.

1.4. Contribution of the present research

This research work introduces Improved ART-1 neural network-guided GA con-

sidering proposed binary conversion methods in a flexible flow shop scheduling

problem and reduces the makespan. ART neural network has been used in many

applications due to its fast-adaptable learning process and stable operations. In

this work, we have presented a discriminating technique and clustering ordered

permutation using ART-1 and Improved-ART-1. In the process, we developed

novel techniques for converting ordered permutations to binary vectors to cluster

them using ART. The performances of ART-1 and Improved-ART-1 have been
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investigated, and the proposed binary conversion methods were evaluated under

varying parameters and problem sizes. Three performance indicators, i.e., mis-

classification, cluster homogeneity, and average distance, are considered in the

analysis. The numerical results indicate the superiority of one of the proposed

binary conversion techniques over the other and Improved-ART-1 over ART-1.

Moreover, potential applications of the proposed technique in developing ANN

guided metaheuristics to solve problems whose solutions are ordered permutations

are discussed. Different small and large size problems in solving flexible flow shop

scheduling using ANN-guided GA is also studied and analyzed to compare with

pure GA.

1.5. Organization of this thesis

The thesis is organized into six chapters. The rest of the thesis proceeds as

follows. Chapter 2 presents the literature survey on metaheuristic algorithms

mainly focused on GA, NN, and GA’s hybridization. In Chapter 3, adaptive

resonance theory (ART), an artificial neural network, has been discussed and

introduced two binary conversion methods for ordered permutations used for

clustering in ART. Chapter 4 discusses the detailed mechanism of GA that is

going to be used in the case study and combining the architecture of GA with

ART. In Chapter 5, numerical examples of ART neural network-guided GA are

provided, and a comparative study has been illustrated. At last, the conclusion

and future work have been presented in Chapter 6.
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Literature Review

2.1. Introduction

Over the last two decades, noticeable efforts have been accomplished to inves-

tigate the research possibility of using Genetic algorithms (GA) and other ma-

chine learning techniques in manufacturing scheduling problems. Furthermore,

the hybridization of GA with another learning method has been proved as a

potential alternative to traditional optimizations techniques, especially for com-

plex scheduling problems. Therefore, in this chapter, a comprehensive literature

review has been presented on manufacturing scheduling, considering GA as a

metaheuristic algorithm and Neural Network (NN) as an artificial intelligence

learning technique. Moreover, the literature survey has been more focused on the

hybridization of GA with the NN approach for various manufacturing scheduling

problems.

This chapter is organized as follows: an overview of GA and NN techniques

presents in section 2.2; a comprehensive literature survey on GA, NN and com-

bined approach of GA and NN in different manufacturing scheduling problems

present in section 2.3; at last, section 2.4 represents the research motivation of
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the thesis.

2.2. GA and NN Approaches

Genetic algorithm (GA) is one of the powerful search-based optimization tools

which mimics the principle of genetics inspired by the natural selection process

to find the optimal solution. GA is a branch of evolutionary computational al-

gorithms. Jhon Hollad is the father of GA, who introduced this algorithm in

the 1960s based on the evolutionary theory (Sadeghi et al., 2014). A neural

network (NN) is generally referred to as an artificial neural network (ANN) in-

spired by biological nerve systems. NN consists of several neurons which are

interconnected like human brains, weights, and propagation function (Awodele

and Jegede, 2009). A list of various NN approaches with their architecture and

application areas is presented in Table 2.1, and advantages and disadvantages are

summarized in Table 2.2.

Table 2.1: List of NN approaches used for different applications (Mehta, 2019;

Team, 2020; Dagli and Sittisathanchai, 1995; Grossberg, 2013).

Types of NN Schematic Diagram Remarks

Hopefield Image recognition and

restoration

Feedforward Simplest type of NN

Continued on next page
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Table 2.1 – continued from previous page

Types of NN Schematic Diagram Remarks

Used in computer vi-

sion, face recognition,

speech recognition

Radial Basis

Function

Widely used in power

restoration system

Multilayer

Perception

More than three layers

Used in machine

translation and

speech recognition

technologies, complex

classification

Convolutional Shows good results in

paraphrase and pars-

ing detection

Continued on next page
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Table 2.1 – continued from previous page

Types of NN Schematic Diagram Remarks

Used in image pro-

cessing, speech recog-

nition, computer vi-

sion, machine transla-

tion

Recurrent Used in image anal-

ysis, text to speech

processing, trans-

lation, sentiment

analysis

Modular Used in stock mar-

ket prediction system,

character recognition

Sequence to

Sequence

Used in chatbot and

machine translation

Continued on next page
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Table 2.1 – continued from previous page

Types of NN Schematic Diagram Remarks

Kohonen Self

Organizing

Used mainly in pat-

tern recognition in the

data

Adaptive

Resonance

Theory

(ART)

ResetGain

Recognition layer

Comparison
layer

V
ag

il
an

ce

+
G

A
tt

in
ti

on
ed

 s
ub

sy
st

em

O
ri

en
ti

ng
 s

ub
sy

st
em

Used in face recogni-

tion, signature verifi-

cation, mobile robot

control, remote sens-

ing, airplane design,

autonomous adaptive

robot control, target

recognition, medical

diagnosis, face recog-

nition, land cover

classification, fitness

evaluation etc

2.3. GA and NN in Manufacturing Scheduling

This section deals with the literature survey on GA, NN, and GA’s hybridization

with NN. In this context, it is found that the number of publications on GA in

scheduling problems is increasing rapidly, whereas the incremental rate of NN and

hybridized methods are not that significant (see Fig. 2.1). However, the statistics
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Table 2.2: Advantages and disadvantages of GA and NN approach (Ansari and
Bakar, 2015; Agarwal et al., 2010)

Approach Advantages Disadvantages

GA

Can solve problems with
multiple solutions (NP
hard), specially for global
search

Time consuming method
and needs a lot of iterations

Easy to understand and
easy to apply to any com-
plex problem

Cannot store the previous
results

Can handle wider class si-
multaneously due to its ro-
bust structure

Sometimes difficult to find
the global optimum solu-
tion

Capable of finding optimum
solution using chromosome
encoding.

Comparatively less effective
method for local search

NN

Good at local search Comparatively less effective
at global search

Depends on heuristics Slow but needs compara-
tively less iterations than
GA

By nature, its operation
is parallel which makes it
more effective

Needs proper training for
compiling the problem and
find best results

Can work efficiently even if
one neuron fails in the mid-
dle of the iteration

Once it is trained, it cannot
be trained during the pro-
cess

Has adaptive learning po-
tentiality and generalize the
problem
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indicate that the research interest in considering a hybrid approach raises over the

last decade, which can be a great opportunity for doing research more. Fig. 2.2

shows the number of published articles on the hybridization of GA and NN in

job shop and flow shop scheduling problems where job shop scheduling problem

is the leading research area.

Figure 2.1: Statistical presentation in terms of publication number since 1985 till
today on scheduling problems using GA, NN, and hybridization of GA with NN.

2.3.1. NN in Manufacturing Scheduling

Over the last three decades, researchers have been attracted by NN for differ-

ent areas, especially for manufacturing scheduling. Since the 1980s, NN has been

considered for the manufacturing scheduling problems to optimize the completion

time (Sabuncuoglu, 1998). The researchers have been attracted to do investiga-

tion in the manufacturing scheduling area because of considering the following
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Figure 2.2: Number of publications over last three decades on job shop and flow
shop scheduling problems that used GA and NN together.

characteristics of NN (Akyol and Bayhan, 2007).

� NN can quickly learn the relationship between input and output variables

and relate them easily, which is very complex analytically for any other

machine learning approaches.

� NN is considered as a very well-performing optimization method.

� NN, e.g., backpropagation NN, can quickly solve the scheduling problem

but cannot optimize the problem like Hopefield NN.

� NN is also used for selecting scheduling rules based on the input and output

requirement to obtain an accurate estimation between the parameters such

as mean flow time, job tardiness, computational time, etc.
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� Any static scheduling problem, the traditional methods such as dynamic

programming, branch and bound methods can find optimum results. How-

ever, These traditional methods are not suitable for flexible and dynamic

manufacturing scheduling problems, whereas NN shows better performance

for optimizing the scheduling issues.

In 1985, Hopfield and Tank (1985) at first introduced the application of

NN for scheduling problems to optimize. Later on, serval researchers used their

proposed approach for job shop scheduling problems. Following the approach de-

veloped by Hopfield and Tank, Foo and Takefuji (1988) tested on 2×3 (i.e., 2 jobs

and 3 machines) problem where the computational complexity was O(m2n2+mn).

Furthermore, Lo and Bavarian (1993) extended the Hopfield approach and used

for 10× 3 problem where the computational complexity was O(α +mnk)2, here

k defines the processing time. Besides, Satake et al. (1994) modified the Hopfield

technique for the 14× 7 problem, but still, the computational time was 700 sec,

which was not good enough for optimization. Sabuncuoglu (1998) published a

review article on NN’s application in scheduling problems where the researcher

pointed out various limitations of existing approaches and optimization issues.

Starting from 2003 to 2010, Agarwal, with his colleagues, did a comprehen-

sive research on augmented neural networks for production scheduling problem

(Colak and Agarwal, 2005; Agarwal et al., 2006; Kasap and Agarwal, 2012). Co-

lak and Agarwal (2005) researched on one of the meta-heuristic approaches, i.e.,

augmented NN (Aug-NN) for open-shop scheduling problem. Initially, 3 Ö 3

problem (3 jobs and 3 machines) was considered for the problem, and then larger

group such as 25 Ö 25, 30 Ö 30, 50 Ö 50, and 100 Ö 100 were also considered. In

every case, the proposed, designed Aug-NN showed better performance in terms

of computational time. In the following year, Agarwal et al. (2006) used Aug-NN

for a non-identical machine environment where 4 tasks and 3 machine rules were
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considered. The proposed approach for non-greedy rules showed a reduction in

the average gap between the lower bound and the solution of 7-10% from regu-

lar greedy rules. In 2012, Kasap and Agarwal (2012) investigated the Aug-NN

approach for the bin-packing problem, which showed a satisfactory result. 1210

benchmark problems were investigated, whereas 917 problems were solved and

optimized its completion time and reduced the gap between upper bound and

solution by 0.66%.

Recently, Huang and Gao (2020) investigated a time wave neural network

for a time-dependent project scheduling problem where the proposed NN does not

need any training. The proposed NN consisted of 7 parts that include input, out-

put, sender, receiver, time window selector, wave generator, and a neuron state.

It was found that the designed algorithm performed better while the number of

nodes were ranging between 60 and 120 and shows a bad performance when node

number less than 30.

2.3.2. GA in Manufacturing Scheduling

GA is used as an optimization algorithm to find the optimal solution with a mini-

mum completion time. It is found that most of the optimization techniques adopt

a single object and single solution, whereas GA can handle many solutions from

the given population with optimization (Nguyen et al., 2017). Therefore, GA has

been received the most researchers’ attention to do study in the manufacturing

scheduling field. A short but enlightening survey on the literature of GA starting

from 1996 has been presented in this subsection.

Starting from 1996, Ono et al. (1996) introduced a job sequence matrix-

based GA for job shop scheduling problems. In addition, the researchers also

designed a new crossover, which was used to store the features of the system.
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Moreover, Giffler and Thompson method was also used, and the proposed ap-

proach was used successfully for 10Ö10 and 20Ö5 problems. After a while, Chou

(2009) used experienced learning GA for a single machine scheduling problem.

Exponential smoothing techniques were used to update the job-job matrix and

position-job over the generation and build up a relationship between position and

jobs. It was found that experienced learning GA could generate 14% chromosome,

which was 10% and 12% more than the Lower Bound-Base Bias Roulette (LBBR)

and Random process, respectively.

An effective GA was used for flexible job shop scheduling problems by Zhang

et al. (2011). The aim of the work was to optimize the makespan of the job. Local

Selection was considered with GA in order to generate the initial population. The

proposed GA approach took less running time by half compared to the GENACE

approach. Furthermore, Wu et al. (2011) also considered the GA technique to

minimize the completion time of the job. It was reported that the branch and

bound learning technique was used for finding the optimal solution earlier, and

then GA was further applied to determine the best optimal solution. The error

was recorded less than 0.11% using the GA algorithm for considered scheduling

problems.

Besides, Qing-Dao-Er-Ji and Wang (2012) designed a new local search ap-

proach to help the GA for job shop scheduling problems. It was noticed that

the proposed hybrid GA had an optimal solution with a probability of 1, which

was proved and compared with other algorithms. Besides, Asadzadeh (2015) also

used a hybrid approach considering GA with agent-based local search, which im-

proved the performance of the GA. The proposed hybrid approach showed better

results compared to a single GA algorithm in terms of makespan, where the im-

provement was recorded as 1.85%. Furthermore, Mendes (2013) used the Monte
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Carlo method and single point cross over with GA as a hybrid approach for job

shop scheduling problems. The proposed approach could find 50% to 75% best

solutions in different instances.

Wu et al. (2015) considered GA and branch and bound algorithms for two

machine flow shop scheduling problems. It was reported from the experimen-

tal results that the proposed GA was effective in finding the optimal solution.

Moreover, considering stability and robustness, the GA approach was useful for

the flow shop. Besides, Bhatt and Chauhan (2016) prepared a review article

on GA based job scheduling problems considering single machine and flexible

jobs. Extended GA was proposed for open shop scheduling problems in order to

optimize the makespan time by Rahmani Hosseinabadi et al. (2019). Mutation

and crossover operators were investigated for GA using the 4Ö4 Taillard Bench-

mark problem. Different numbers of jobs ranging from 4 to 20 with a number of

machines from 4 to 20 were considered for the proposed scheduling problem for

extended GA. It was reported that the proposed approach required less compu-

tation time compared to other GA and hybrid approaches.

2.3.3. Hybridization of GA

Over the last two decades, in order to design the network more efficiently and in

an optimized way to save computational time and effort, hybridization has been

considered to combine GA with other algorithms. In this study, the research has

been focused on hybridization, which combines GA and NN to fulfill the objective

of this thesis. It has been found that the hybridization of GA and NN can be

an effective approach to predict and optimize any complex scheduling problems.

Therefore, in this section, a comprehensive literature survey has been studied.

Fig. 2.3 shows a van diagram to present the possibility of the hybridization option

that combines GA with NN and other approaches.
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Figure 2.3: Van diagram presenting a possible hybridization option for research.

In 1993, Dagli and Sittisathanchai (1995) proposed a hybrid approach, in-

cluding GA and ANN, for the discrete environment of a job shop scheduling

problem. GA was used to optimize the job schedule where the population was

randomly generated, and ANN was used as a multi-criteria evaluator. It was

reported, using 10 jobs and 10 machines, the proposed hybrid approach required

291 times to complete the problem, whereas single processing time required 400

times. Later on, Lee and Dagli (1997) also researched on the parallel genetic-neuro

scheduler that included six modules (i.e., input, initialization, interpretation,

evaluation, population generation, and schedule display) for job shop schedul-

ing problems. It was reported that 50 population with 6 jobs and 6 machines

were considered where the proposed approach required only 9 iteration and lead

time was 55.

GA with Decision Trees (DTs) as a machine learning technique was pro-

posed for dynamic job shop scheduling problem by Lee and Dagli (1997). The

study was conducted considering 1200 jobs with 3 workstations. GA was used to

optimize the job dispatch, and a decision tree was used for job release in the job

sequence and run concurrently. It was noticed that using ML and GA, the system

took 26.05 minutes for 3 workstations and 168.15 minutes for 7 workstations. In

addition, Abe et al. (2000) presented a hybrid approach combination of artificial
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neural network (ANN) and GA for a 3Ö3 flow shop scheduling problem. 125 jobs

were considered in the investigation. It was noticed that smaller ANN had higher

job addition adaptability compared to without ANN.

Yu and Liang (2001) presented NN and GA algorithms for expanded job-

shop scheduling problems considering a 6Ö6 benchmark problem. NN was used

to optimize the starting time of the operation for a fixed sequence, and GA was

used to find out the optimized sequence. The researchers introduced a new kind

of neural network called constrain neural network for their proposed expanded

scheduling problem. It was reported that the hybrid approach was remarkably

effective for expanded job schedule problems.

Palmes et al. (2005) utilized a back mutation-based genetic neural network

instead of using backpropagation ANN. The proposed approach made the net-

work dynamic in structure. Moreover, this system helps to consider a wide range

of populations with more flexibility and less restriction. Furthermore, Fuqing

Zhao et al. (2005) also consider a hybrid approach using constraint NN and GA

for expanded job shop scheduling problem. NN was used to optimize the job

start time, whereas GA was used to optimize the job sequence. 6Ö6 problem

was considered with 55 jobs in the investigation. After compiling the algorithms

100 times, it was noticed that the proposed hybrid approach took 55 run time to

achieve the best value, whereas NN and GA needed 71 and 57 times, respectively.

Furthermore, Qiang Gao et al. (2005) designed a new diffusing operator for global

and local search for GA to help feedforward ANN.

Li and Chen (2009) constructed GA and NN as a hybrid approach for dy-

namic manufacturing scheduling problems. The researcher tried to minimize the
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makespan period using the proposed approach. On the one hand, The back-

propagation NN (BPNN) was used to demonstrate the arrival of new jobs and

machine breakdown status. On the other hand, GA was considered to optimize

the sequence of the job and makespan. It was reported that the run time became

18.326 seconds for 920 epochs using the BPNN and GA approach. Furthermore,

Senties et al. (2009) combined the NN and GA for manufacturing multiobjective

scheduling problems. The output of the ANN was sent to the GA for optimizing

the job sequence. It was reported that discrete event simulation took 100 times

more to complete the job than using ANN with GA, a fast responder for multi-

objective scheduling problems.

Sivapathasekaran et al. (2010) used GA and ANN in order to maximize the

production of the biosurfactant. The statistical experimental strategy was used

to obtain the results, which was further used in linking the ANN with GA. It

was reported that the proposed hybrid system could boost up the production by

nearly 70%. Moreover, Haq et al. (2010) also proposed NN and GA as a hybrid

approach with random insertion perturbation scheme for the permutation-based

flow shop scheduling problem. The NN consisted of 20 and 30 neurons in the two

hidden layers. Furthermore, 20 and 50 jobs for 10 machines were considered for

scheduling problems.

Ramanan et al. (2011) proposed ANN combining with GA for flow shop

scheduling problem. ANN was used to obtain the sequence and provided to GA

for further improvement and optimize the makespan. The proposed NN was

composed of 30 and 20 neurons for 5 jobs and 10 machines. At first, ANN was

used to generate the sequence of the jobs for each machine as a solution, and

then the output of ANN was sent to GA for optimizing the solution. Besides,

Deane (2012) also considered the hybrid approach, i.e., GA and augmented NN,

30



Chapter 2. Literature Review

for scheduling problems used for online advertisement. It was reported that the

hybrid approach had the lowest average percentage gap from the upper bound of

1.5% whereas GA and augmented-NN individually had 1.59% and 8.82%, respec-

tively. Moreover, another hybrid option combining GA with perceptron learning

rules for machine scheduling was presented by Fazlollahtabar et al. (2012). 25

jobs and 5 machines were considered for mathematical modeling. In addition,

150 jobs with 7 machines were also tested, where the learning rate of GA was

0.73.

With his team, Agarwal research the neurogenetic hybrid approach that

combines NN and GA for scheduling problems since 2010 (Agarwal et al., 2010,

2011, 2006). Starting in 2010, Agarwal et al. (2010) chose NN and GA algorithms

for NP-hard optimization scheduling problem to overcome the difficulties of bal-

ancing between global and local search. This proposed approach was used for a

population set ranging from 100Ö5 to 500Ö30. The following year, Agarwal et al.

(2011) proposed a hybrid mechanism, including GA and NN, which is called the

Neurogenetic metaheuristic approach for scheduling problems. The researchers

used GA and NN for global and local research, respectively. Both GA and NN

provided a good solution from the pool irrespectively, and therefore, the overall

output of this hybrid approach was better comparatively better than individual

GA or NN approach. For example, the proposed Neurogenetic approach had a

percentage deviation for 1000 of evaluated schedule was 0.13, whereas GA had

0.19, and NN had 0.25.

A new approach called learning rate optimization genetic algorithm with

backpropagation for optimizing NN was considered by Kanada (2016). 50 neu-

rons were used in the hidden layer, and 2 neurons were used in the output layer

in the proposed NN system. It was reported that the proposed hybrid system
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solved learning rate scheduling and local search control issues. Besides, Seidgar

et al. (2016) presented their work combining ANN and nondominated GA for the

flow shop scheduling problem. 5 jobs and 2 machines were used for the proposed

approach. Besides, Inthachot et al. (2016) considered GA and ANN combinations

for estimating the stock price trend in Thailand. In their research, data collected

from 2009 to 2014 were used for determining the efficacy of the hybrid system.

Dorronsoro and Pinel (2017) also proposed a hybrid approach combining

machine learning, i.e., virtual savant (VS), for independent job scheduling prob-

lem. VS was used to generate the initial population that would be adopted for

GA to optimize the scheduling. It was reported that a 16Ö16 problem was used

in the square grid with 4 threads where this population was randomly initialized.

The hybrid approach had a confidence level of 95% from the statistical study.

Furthermore, Wu et al. (2018) combined GA with Particle Swarm Optimization

techniques for multimachine scheduling problems and conducted experimental

trials as well. The Sum of job processing time-based learning algorithm was used

to optimize the tardy jobs. 100 instances were randomly generated for a popula-

tion size of 20 to 40, where 5000 iterations were proposed by GA. More recently,

in 2019, Azadeh et al. (2019) investigated computer simulation, ANN, and GA

for flexible flow shop scheduling problems. The output of computer simulation

was inserted into ANN, and the output of ANN was provided to GA for reducing

the job completion time in the sequence. It was noticed that the proposed hybrid

algorithm reduced the error.

2.4. Research Motivation

From Table 2.2 where GA has some advantages over NN and NN has some ad-

vantages over GA, which indicates a potential research field to combine these
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two algorithms for metaheuristic applications. Besides, it is clearly noticed that

limited literature is found on the hybridization of GA with NN for manufacturing

scheduling problems. It is reported that GA tries to give the best possible solu-

tion and can discard other solutions, which might be an optimal solution. The

hybridization of GA and NN has attractive features, such as requiring less train-

ing and no premature convergence, which makes it an alternative approach for

manufacturing scheduling problems. Therefore, NN, specifically adaptive neural

network (ART), can be used for this purpose in order to find out optimal solutions

for GA so that GA can explore more regions in order to find out the optimal solu-

tion. Interestingly, no literature found where GA has been considered with ART

for the flexible flow shop problem. This motivates us to do research in the area of

combining GA and ART for discriminating and clustering ordered permutations

using neural network and potential applications in ANN Guided Metaheuristics

for flexible flow shop scheduling. In this regard, the following chapters will be

focused to fulfill the purpose of this thesis to accomplish the motivation.
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Binary Conversion Methods and

ART Neural Network

3.1. Introduction

This chapter’s main objective is to present two novel techniques for convert-

ing ordered permutations to binary vectors for clustering them using Adaptive

Resonance Theory (ART) since ART neural network has been used in many ap-

plications due to its fast-adaptable learning process and stable operations. In

this process, we present a discriminating technique and clustering ordered per-

mutation using ART-1 and Improved-ART-1. The performances of ART-1 and

Improved-ART-1 have been investigated, and the proposed binary conversion

methods were evaluated under varying parameters and problem sizes. Three

performance indicators, i.e., misclassification, cluster homogeneity, and average

distance, are considered in the analysis.

This chapter is organized in the following manner: section 3.2 discusses the

proposed two types of binary conversion methods with details of considered per-

formance indicators; an introduction of ART, its classification, advantages and
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disadvantages, basic architecture, applications of ART are presented in section

3.3; section 3.4 shows a detailed discussion on operational stages, learning algo-

rithm of ART-1 and improved ART-1 techniques; section 3.5 presents numerical

analysis and comparison between method 1 (M1) and method 2 (M2) adopting

ART-1 and improved ART-1 neural networks and finally this is concluded in

section 3.6.

3.2. Proposed Binary Conversion Methods

A binary conversion technique is required for converting ordered permutations

to binary vectors. The binary conversion technique can be applied in developing

neural network guided metaheuristic algorithm to solve problems where solutions

are ordered permutations. Many problems have this attribute. Typical examples

include traveling salesman problems, flow shop scheduling, single row facility lay-

out, and many other quadratic assignment problems. Since, in this work, we have

considered ART-1 as a neural network learning mechanism for our in vestigation

which requires binary input for clustering; therefore, the ordered permutation has

to be converted into equivalent binary. In order to achieve this transformation,

two new binary conversion methods that transformed ordered permutation to

binary input has been proposed and described.

3.2.1. Method-1

The first proposed binary conversion method is titled Matrix method (M1) be-

cause it is formatted in the matrix style. In M1, if we consider a problem size

that has ‘N’number of distinct objects, it will generate a N × N matrix. Each

distinct object of the permutation sequence represents an individual column in

that matrix. When an object is considered from this permutation sequence, then

the corresponding position of that column will be numbered as ‘1’. A half-width
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(HW) parameter is introduced here to decide how many positions to the left and

right of the corresponding object number are going to be converted into 1. If the

width of the 1s is too wide, all the solutions will be identical. If the width of

the 1s is too narrow, then a small change in the permutation may create totally

nonidentical matrixes. Therefore, HW should be selected very carefully.

Figure 3.1: Method-1 conversion process.

Figure 3.1 presents a 20× 20 matrix where a randomly generated permuta-

tion sequence of 20 objects has been considered and indicated as: 16, 11, 15, 4,

7, 17, ......., 20 (bottom 2nd row). The 1st object of the permutation sequence is

16 as shown in Fig. 3.1. So, this 1st object (16) represents a column number (1,

column numbers are at the bottom row horizontal position as: 1, 2,.. 20). The

corresponding position (row number at the vertical position numbered as: 1, 2,..

20) of 16 in column number 1 will be numbered as ‘1’, which is colored as “Red”.

A HW 3 is considered for this example. Therefore, 3 positions to the left and 3
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positions to the right of object 16, which is numbered as ‘1’(colored in “Red”),

will be converted into ‘1’(colored in “Green”). Similarly, all the other objects

in the permutation sequence will be converted. After the matrix is created, the

input string which will be sent to the ART can be created by concatenating rows

of the table into a single row vector.

3.2.2. Method-2

The second binary conversion method which we call Base-2 (M2). The cartesian

coordinate is used in M2, where an object’s position is considered in a particular

sequence. In M2, the cartesian coordinate of the ordered permutation sequence

of ‘N’objects is determined, which will be a new sequence. This new permutation

sequence will then be converted into a base 2 number.

Figure 3.2: Method-2 conversion process.

Figure 3.2 shows an example of M2 conversion technique. Here, the bottom

row, i.e., 1, 2, ...., 20, is the actual position of the object, and the middle row

represents the randomly taken permutation sequence of 20 objects (16, 11, 15,

4,......., 20; bottom 2nd row). It is seen that the position of object 1 (colored

in “Red”) is placed at 13 (bottom row numbered as: 1, 2,..., 20) in the table.

According to the cartesian coordinate rule, this position 13 of the object 1 will be

placed at the 1st position of the row, which is the 1st number of the new sequence.

Likewise, all the new positions will be determined to get the new permutation

sequence. Then, each object of the new permutation sequences will be converted
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into base 2. From this table, the input string, which will be provided as the input

of ART-1, can be written by concatenating each binary column’s transpose into

a single row vector.

3.3. Adaptive Resonance Theory

There are basically two learning mechanism exists in ANN where one is fast learn-

ing process and other one is slow process. ART-1 is fast learning process and deals

with binary input vectors. In this paper, we have applied our proposed binary

conversion M1 and M2 in ART-1 and Improved-ART-1 for numerical analysis

purpose.

Adaptive resonance theory (ART) is a neural network learning technique

developed by Gali Carpenter and Stephen Grossberg in 1987 (Carpenter and

Grossberg, 1987). Adaptive and resonance of these two words indicate that this

technique is suitable for new learning considering the old information. ART

system is utilized to clarify various types of brain and cognitive data. The basic

ART adopts an unsupervised NN learning mechanism. ART network is well

known to solve the stability-plasticity dilemma where stability indicates that the

memorizing the learning process, and plasticity defines how flexible ART is to

adopt new learning information. ART network generally executes an algorithm

in order to cluster the inputs.

3.3.1. Classification of ART

Different types of ART are introduced by researchers for different purposes over

time since 1987. The most common ART types are as follows:

� ART-1 (Carpenter and Grossberg, 1987): ART-1 is the basic and the sim-

plest architecture type of unsupervised ART. ART-1 deals with binary input
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vectors during clustering. It changes with the external change to the vigi-

lance parameter. ART-1 architecture consists of two units, i.e., computation

unit and supplemental unit.

� ART-2: ART-2 is the extension and upgraded type of ART-1. It can handle

continuous or real-valued input vectors during clustering. The main differ-

ence between ART-1 and ART-2 is the input layer, where ART-2 has three

input layers (Brito da Silva et al., 2019).

� Fuzzy ART: Fuzzy ART is the expansion of ART and Fuzzy logic (Carpenter

et al., 1991).

� ARTMAP: ARTMAP is a supervised form of ART where it learns from the

previous stage, and therefore it is also known as predictive ART (Carpenter

et al., 1991).

� Gaussian ART and ARTMAP (Williamson, 1996)

� TopoART Tscherepanow (2010)

� Hypersphere ART (Anagnostopoulos and Georgiopoulos, 2000)

3.3.2. Advantages and limitation of ART

ART has advantages and limitations, as well. Advantages and disadvantages of

ART-1 are as follows (Brito da Silva et al., 2019):

Advantages of ART:

i. ART is stable and is not distributed by a wide range of inputs provided to its

network.

ii. It can easily adopt other learning mechanisms to provide excellent and precise

results.

iii. It is better than competitive learning, e.g., BPNN ( Back-Propagation Neural
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Network), because competitive learning cannot add new clusters when necessary.

iv. ART does not confirm stability while forming clustering.

Limitation of ART:

ART, like ART-1 and Fuzzy ART networks are inconsistent because they depend

on the order in which they are trained and on the learning rate.

3.3.3. Appliations of ART

Since 1991, ART has been using in different applications due to its fast, effi-

cient, and stable learning technique. ART has been widely used in face recog-

nition, signature verification, mobile robot control, remote sensing, airplane de-

sign, autonomous adaptive robot control, target recognition, medical diagnosis,

face recognition, land cover classification, fitness evaluation, etc. (Dagli and Sit-

tisathanchai, 1995; Grossberg, 2013; Burton and Vladimirova, 1997, 1998).

It is noticed that it costs when a new part is introduced during manu-

facturing. Smith and Escobedo (1994) discussed the importance of ART-1 in

engineering applications, especially for information retrieval. ART-1 is forming

clusters during the training period using the inputs similar in patterns, and these

clusters are saved in the neural database for future reference. when a new input

is introduced, ART-1 tries to match this new input with the neural database’s

stored pattern and process accordingly. Dagli and Sittisathanchai (1995) adapted

ART-1 for the machine-part family formation in the cellular manufacturing en-

vironment. Burton and Vladimirova (1997) considered ART for fitness evolution

for computational optimization using a genetic algorithm. Since NN requires ex-

tensive training that consumes enormous time to incorporate with GA; therefore,

ART neural network was proposed for GA fitness evolution. However, it was re-

ported that ART generated a higher and uncontrolled number of clusters at high
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vigilance value. Later on, Burton and Vladimirova (1998) used ART in the fitness

evolution for musical composition. Hemanth et al. (2010) used ART to classify

brain tumor images and recommended it as an optimal image classifier in the

medical field. Mart́ı et al. (2011) presented ART based estimation of distribution

algorithm (EDA) for multi-object. It was reported that ART based EDA out-

performed compared to the multi-objective evolutionary algorithm (MOEA) and

multi-objective estimation distribution algorithm (moEDA). Miguelañez et al.

(2004) considered ART as a classifier in the semiconductor industry for develop-

ing an automatic defect identifier. It was found that the proposed ART based

system identified 82%.

3.3.4. Architecture of ART

ART is a competitive and self-organizing neural network. ART can be unsuper-

vised (ART1, ART2, etc.) and supervised, such as ARTMAP. The basic archi-

tecture of ART includes three units as follows and shown in Fig. 3.3.

Figure 3.3: Schematic presentation of basic architecture of an ART.

(i) Input/computational unit (F1 layer): F1 layers deal with input vectors

and transfer to the next unit F2 layer for clustering purpose. F1 layer includes

F1 input and F1 interface layers. F1 input layer works with input vectors only,

and there is no processing over there. However, the F1 interface layer works input
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vectors according to bottom-up and top-down weights.

(ii) Clustering/recognition unit (F2 layer): This is also known as a com-

petitive layer. F2 layer process all the inputs based on the patterns and then put

them into clusters according to the clustering algorithm.

(iii) Control mechanism/reset unit: The final decision is made in the con-

trol/rest unit. This rest unit decides whether the cluster unit should learn the

input pattern depending on the top-down or bottom-up rules or not. This is

generally called the vigilance test, where the vigilance parameter helps to learn

new information. There is a supplement unit, which is also known as the gain

control unit denoted as “G”.

3.4. ART-1 and Improved ART-1 Learning Mech-

anism

Many properties make ART-1 more attractive to the researchers (Smith and

Escobedo, 1994). Firstly, as mentioned early, ART-1 is very fast compared to

the standard computers because it handles binary inputs. Secondly, ART-1 can

easily tackle the implementation of high-performance hardware. Thirdly, ART-

1 exhibits stable performance even during new inputs or information. Finally,

ART-1 can be described mathematically, which is suitable for design applications.

Therefore, ART-1 is a suitable option to consider for manufacturing scheduling

problems. Moreover, the manufacturing industries’ outcomes are discrete types;

therefore, ART-1 is suitable for the proposed scheduling problem.
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3.4.1. ART-1 Learning Technique

Figure 3.4 represents a general architecture of ART-1 that consists of basically

two subsystems, i.e., attention and orientating subsystems (Pandya and Macy,

1997). The attention subsystem includes two main layers of ART-1 architecture:

the recognition layer and comparison layer with feed-forward and feed-backward

features. The attention subsystem responsible for matching the input patterns

with the stored patterns and resonance is established if the pattern matches.

Furthermore, the orienting subsystem determines the mismatch between the top-

down and bottom-up patterns in the recognition layers. Besides, three units in

the ART-1 architecture includes Gain-1 and Gain-2 and Reset (as shown in Fig.

3.4.
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Figure 3.4: Basic architecture of ART-1 (Pandya and Macy, 1997).

Recognition Layer

The recognition layer deals with the input vectors to compare to the original

vectors using a factor called vigilance. This vigilance is a measuring parameter
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to determine the distance between the input and the fired neuron cluster center

in the recognition layer. Here one of the two things has happened, i.e., if the

vigilance is below the threshold value, then a new category must be generated,

and the input vector must be placed in that new category; otherwise, if the input

vector authorizes the vigilance, then the engaging neuron is trained such a way

so that the center of the cluster is moved toward to the input. This recognition

layer is also termed as F2, which is a top-down layer.

C1 C2 Cm CmC2C1CmC2C1

C

B1 B2 Bn

r1 r2 rn

b11 b21 bm1 bm2b22b12 bmnb2nb1n

Figure 3.5: Recognition layer of ART-1 (Pandya and Macy, 1997).

Figure 3.5 shows the details of the recognition layer. Each of the recognition

layer neuron is denoted as j with a weight vector Bj. Each neuron receives input

from the comparison layer. The net output (ψi) of the recognition layer can be

written as:

ψi =
M∑
i=1

bijci (3.1)

rj = f (ψj) =

 1

0

forψj > ψiforalli 6= j

otherwise
(3.2)

Where ci represents the output of ith neuron in the comparison layer, f is
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the step function, rj is the binary value, M is the total number of neurons in the

comparison layer and bij are the bottom up weights.

Comparison Layer

G1

P1 P2 Pm

X1 X2 Xm

C1 C2 Cm

r1 r2 rn

R

X

t11 t12 t1m t22t21 t2m tn2tn1 tnm

T1 T2 Tn

C

Figure 3.6: Comparison layer of ART-1 (Pandya and Macy, 1997).

The comparison layer is termed as F1 layers, which is a bottom-up layer. A

detailed picture is illustrated in Fig. 3.6. The comparison layer deals with three

types of inputs such as:

i) The input pattern X i.e., x1, x2, . . . .xi

ii) The same gain input to each of the neuron (G1).

iii) The input from recognition layer as the feedback signal. The feedback signal

value can be determined by:

Pi =
N∑
j=1

tjirjfori = 1, ......M (3.3)
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Where, rj is the output of the jth neuron of the recognition layer and N o

the total number of neurons in the recognition layer. Tj is the weight vector in

the comparison layer and tij are the top down weights. Gain-1 (G-1) is 1 when

the Vector R is 0 and the logical “OR’ of the components of the input vectors X

is 1 and given by:

G1 =
(
r1| r2| ........ |rn

)
• (x1| x2| ........ |xM ) (3.4)

Gain-2 (G-2) is 1 when the logical OR of the component of the X is 1 and

given by:

G2 = (x1| x2| ........ |xM ) (3.5)

The comparison layer adopts a two-third rule which states that if two -third of

the inputs are 1 then the output is 1, otherwise the output is 0.

3.4.1.1 ART-1 Learning Stages

There is no input at the initial stage (stage-I), and G-2 becomes 0, according to

Eq. (7). When an input is introduced in the network, the input passes through

the comparison layer to the recognition layer (see Fig. 3.7). Then the process

starts from the recognition layer. The feedback vector R of the recognition layer

is initially set to 0, and according to the Eqs. (6) and (7) G1 and G2 become

1. The output of each neuron in the recognition layer is the dot product of the

weight vector Bj and the output component C vector of the comparison layer.

The wining neuro then triggers other neurons in the recognition layer. Therefore,

one of the components of the vector R becomes 1, and the rest of the components

become 0, which starts the comparison phase.

In stage-II, each neuron of the recognition layer is compared to its prototype

that is stored in the bottom-up weights with the input pattern and when the best
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Figure 3.7: Operation stage 1 of ART-1 where G1 is 1 (Pandya and Macy, 1997).

match is found to be fired (as shown in Fig. 3.8). During this comparison phase,

vigilance is set so that the best match is found. Besides, the vector R becomes

1, whereas G1 is set 0. According to the two-third rule, neurons with 1’s in the

comparison layer from X and P vector will be triggered.

Recognition
layer

Comparison
layer

0

G

1010

1010

Winner

Figure 3.8: Operation stage 2 of ART-1 where G1 is 0 (Pandya and Macy, 1997).

Let, D, and K are the ones in the X and C vector, respectively. Hence, S

is the similarity ratio which can be written as S =K/D. This similarity vector S,

is a matric that will be used to determine likeness between the input vector and

the prototype. Now, a criterion will be set based on which the cluster will be
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accepted and rejected. The criterion will be given by:

S > ρ −→ passedthevigilancetest

S ≤ ρ −→ passedthevigilancetest

If the vigilance is passed, it means there is no difference between the input vector

and the prototype, and therefore, the required action is stored in the center of

the winning neuron cluster. Besides, there is no reset value in this case, and the

network operation is completed. Now, if the vigilance is not passed, it means the

value of S is below than the threshold; then the input patter is placed into a new

cluster center of the neuron by creating a new category rather than putting into

the winning neuron, which will be inhibited and this is done by the reset signal.

This the end of the comparison phase (see Fig. 3.9).

Recognition
layer

Comparison
layer

0

G

1010

1010

Winner

Figure 3.9: Operation stage 3 of ART-1 (Pandya and Macy, 1997).

In the fourth stage (as shown in Fig. 3.10), the search phase is initiated if

there is no reset signal generated, and the match is considered satisfactory. At

this point, classification is complete. If it does not happen, then the vector R

is set to 0, and the G1 becomes 1 again so that the input vector X appears on

C and a new neuron is triggered for the recognition layer to be won, and this
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process will be repeated until the winner neuron that passes the vigilance test

(S > ρ).

Recognition
layer

Comparison
layer

1

G

0 101

1010

New Winner Previous winner is ingibited

Figure 3.10: Operation stage 4 of ART-1 (Pandya and Macy, 1997).

3.4.1.2 ART-1 Learning Algorithm

The algorithms of ART-1 is as follows (Pandya and Macy, 1997) :

Step 1: Initialize the vigilance parameter, learning rate and weights which is as

follows:

bij <
L

L− 1 + x
(3.6)

where, x is the number of input vector, L is a constant.

Step 2:When an input vector is introduced in the network then the recognition

layer starts comparison and find out the maximum of all the net output of the

neurons according to Eq. 3.1.

Step 3: Run the vigilance test. A neuron (j) in the recognition layer passes the

vigilance test if only if
ψj

N∑
i=1

xi

> ρ (3.7)
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where ρ is the vigilance threshold.

Step 4: If the vigilance test fails then obscure the current winner and go to the

step 1 to figure out another winning neuron. Repeat the whole process until a

winning neuron passes the vigilance test, and then go to step 5.

Step 5: If there is no neuron that passes the vigilance test then create a new

neuron in order to accommodate the new input pattern.

Step 6: Adjust and update the feed-forward weights from the winning neuron

to the inputs. The update of the bottom-up and to-down weights can be done as

follows:

bij <
Lc1

L− 1 +
∑
ck

(3.8)

tij = ci (3.9)

Step 7: If there is no input vector then stop otherwise go to Step 2.

3.4.2. Improved-ART-1 Learning Technique

The general form of ART-1 does not provide satisfactory outcomes due to: (i) the

classification process and the outcomes are dependent on the order of the applied

input vectors; (ii) the stored patterns become scattered when more inputs are

inserted which means that as the training proceeds the stored vectors become

more spares and spares; (iii) it is difficult to identify the suitable vigilance pa-

rameters since cell number increase with higher vigilance value. These drawbacks

make ART-1 not suitable for manufacturing scheduling problems, especially for

permutation-based flow shop problems. As a result, Dagli and Huggahalli (1993)

proposed improved ART-1 by changing a few things in the basic methods. The

changes are as follows:

(i) Colum and rows will be arranged according to the decreasing number of 1s.

(ii) The prototype patterns are stored during training period according to one of
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the following equations:

If the number of 1s in the weight vector T is larger than input vector X then Eq.

3.6 becomes:

bij<
Ltij∗

L− 1 +
∑
tij∗

(3.10)

where, tij∗ = tij∗ (no change).

If the number of 1s in input vector X is lager than the weight vector T then Eq.

3.6 becomes:

bij<
Lxi

L− 1 +
∑
xi

(3.11)

3.5. Numerical Study and Performance Analy-

sis

In this section, the proposed binary conversion methods have been considered

for numerical studies. Moreover, an experimental data generation process has

been described, which is used during computational programming. Besides, a

comparative study has been presented between the binary conversion methods

M1 and M2, considering ART-1 and Improved-ART-1.

3.5.1. Experimental Data Generation

Experimental data is generated in order to analyze the presented binary conver-

sion techniques and neural networks. At first, certain numbers of permutations

are randomly generated which are called seeds. Then, each seed is perturbed

independently, which is termed as degree of perturbation, to produce other se-

quence of permutations and it is indicated as the number of solutions per seed.

These permutations are generated in random order. It can be predicted from

these experimental data ahead of time that how many clusters are supposed to
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be generated. Therefore, if the number of seeds is ‘X’, then potentially the number

of generated cluster should be also ‘X’. Each permutation of a particular cluster

is called member of that cluster. Here, three indicators have been introduced as

performance evaluator for the numerical work which are as follows:

3.5.1.1 Misclassification

It is important to determine misclassification whether a given permutation classi-

fied correctly or not. If the distance between a particular permutation and a given

cluster centroid is greater than the distance between that permutation and any

other cluster centroid to where the permutation does not belong, then that per-

mutation is termed as misclassified. Therefore, misclassification is one of the im-

portant performance indicators in this analysis. Lets say, cluster i (i = 1, 2, · · · , I

where I is number of clusters) contains total number of Pi permutations where

each permutation is indicated by p = 1, 2, 3, · · · , Pi. The cartesian coordinate of

permutation p can be defined as, Πp = {O1,p, O2,p, ......, ON,p}; where, On,p is the

location of object-n in permutation p, where n = 1, 2, · · · , N , andN is the number

of distinct objects. The centroid of cluster-i defined as, Ci = {Ci,1, Ci,2, ......, Ci,N}

where the nth cartesian coordinate is given as:

Ci,n =

P∑
p=1

Oi,p

N
; ∀n (3.12)

The distance Dp,Ci
of permutations p from the cluster centroid Ci to which it

belongs can be calculated by:

Dp,Ci
=

√√√√ N∑
n=1

(Ci,n −On,p)
2 (3.13)

The Dp,Ci′
of permutation p to any other cluster (cluster-i′) to which the permu-

tation does not belong can be calculated in a similar fashion. If Dp,Ci
> Dp,Ci′
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for at least one i′ 6= i, the permeation is said to be misclassified.

3.5.1.2 Homogeneity

Homogeneity is defined as the largest count of members from the same seed

divided by the total number of permutations that belong to that cluster. If

most of the members are from the same seed, then the homogeneity of that

cluster becomes large, and that is considered a better cluster. Generally, cluster

homogeneity is calculated in percentage (%). Hence, a high percentage of cluster

homogeneity is expected in the analysis.

3.5.1.3 Average Distance

Average distance is another indicator that can be considered to evaluate the

performance comparison between binary conversion methods M1 and M2. The

average distance can be calculated from each member’s total distance from the

centroid of a cluster divided by the total number of members of that cluster. It

is noted that if the average distance is less, then the cluster formation is good.

Therefore, a lower average distance is presumed to indicate a good clustering

criterion.

In the following subsections, the comparison between two binary conversion

techniques has been discussed in terms of misclassification, homogeneity, average

distance. The performance and behavior of ART-1 and Improved-ART-1 have

been investigated while clustering these binary data considering different vigilance

values, the number of seeds, half-width, degree of perturbations, problem size.

3.5.2. Comparison between M1 and M2 with ART-1

At first, the performance of the proposed binary conversion methods has been

examined for ART-1. In this initial analysis, the number of seed 5, degree of
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perturbation 0.4, vigilance value 0.5, number of solution per seed 500, half-width

3, and number of objects 40 have been considered to perform the numerical study.

Since the proposed analysis provides slightly different solutions during each run;

therefore, a total of 10 solutions have been considered and taken the average of

these 10 solutions. As a result, ART-1 considering M1, generates a total number

of 9 clusters where the total number of misclassification is 1834 (see Table 3.1).

Similarly, Table 3.2 presents the performance of ART-1 using proposed binary

conversion M2, where the number of clusters is 9, same as in ART-1 with M1,

but the number of misclassification for ART-1 M2 is 1900 that is higher than

ART-1 M1. Hence, binary conversion M1 overall outperforms M2 for ART-1.

Table 3.1: Performance Analysis for ART-1 considering M1.

No. of Misclassification Cluster No. of Homogeneity Average

Cluster ID Members (%) Dist.

9 1834 0 308 50 55

1 335 37 62

2 281 44 59

3 342 48 55

4 382 49 57

5 290 42 58

6 258 44 59

7 184 56 33

8 108 26 29

9 58 20 4
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Table 3.2: Performance Analysis for ART-1 considering M2.

No. of Misclassification Cluster No. of Homogeneity Average

Cluster ID Members (%) Dist.

9 1900 0 356 34 64

1 317 33 65

2 321 37 63

3 331 32 65

4 365 36 63

5 366 42 59

6 216 40 60

7 165 39 37

8 148 16 54

9 59 10 20

A comparison between M1 and M2 adopted ART-1 has been illustrated in

Fig. 3.11 in terms of homogeneity for each cluster based on Table 3.1 and 3.2. It

is noticed that the clusters made using M1 are more homogeneous than M2 for

ART-1. The higher the homogeneity, the better the cluster formation. Besides,

according to this bar graph, M1 shows better performance based on homogeneity

value than M2 deploying ART-1 (see Fig. 3.11).

Figure 3.12 presents a bar graph where a comparison between M1 and

M2 has been presented in terms of average distance at each cluster for ART-1.

It is found that the average distance in each cluster for M1 is less than M2,

which indicates that the members of a particular cluster are closer to each other.

If the average distance is less, the cluster formation is better. According to

this result, M1 performs better than M2, considering the average distance and

different cluster IDs using ART-1.
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Figure 3.11: Change in homogeneity along with cluster ID for M1 and M2 con-
sidering ART-1.

3.5.3. Comparison between M1 and M2 with Improved-

ART-1

Similar performance analysis has been conducted to compare M1 and M2, con-

sidering Improved-ART-1 in terms of homogeneity for each cluster. Likewise,

the number of seed 5, degree of perturbation 4, vigilance value 0.5, number of

solution per seed 500, half-width 3, and number of objects 40 have been consid-

ered to perform the numerical study for Improved-ART-1. The results show that

Improved-ART-1 considering M1 generates a total number of 5 clusters where

the total number of misclassification is 22 (see Table 3.3). However, considering

binary conversion method-2 for Improved-ART-1, the number of clusters is 5,

which is the same the Improved-ART-1 M1, but the number of misclassification

for Improved-ART-1 M2 is 183 that is higher than Improved-ART-1 adopting
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Figure 3.12: Average distance vs cluster ID for M1 and M2 considering ART-1.

M1.

Table 3.3: Performance Analysis for Improved-ART-1 considering M1

No. of Misclassification Cluster No. of Homogeneity Average

Cluster ID Members (%) Dist.

5 22 0 505 99 21

1 508 98 22

2 505 99 21

3 503 99 21

4 479 100 20
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Table 3.4: Performance Analysis for Improved-ART-1 considering M2

No. of Misclassification Cluster No. of Homogeneity Average

Cluster ID Members (%) Dist.

5 183 0 697 76 39

1 602 86 32

2 613 84 36

3 500 95 26

4 88 20 21

A comparison between M1 and M2 using Improved-ART-1 has been pre-

sented in terms of homogeneity of each cluster (see Fig. 3.13) considering Table

3.3 and 3.4. It is noticed from the tables that M1 is more homogeneous than M2

for each cluster considering Improved-ART-1. Figure 3.14 presents a comparison

between M1 and M2 in terms of average distance at each cluster. It is found

that the average distance in each cluster of Improved-ART-1 M1 is less than M2,

which indicates that the members of a particular cluster are closer to each other.

Therefore, M1 is also performing better than M2 for Improved-ART-1.

A comparison has been made between ART-1 and Improved-ART-1 consid-

ering misclassification in terms of proposed binary conversion M1 and M2. Figure

3.15 represents a pie chart that shows the number of misclassifications that have

been generated by ART-1 M1, ART-1 M2, Improved-ART-1 M1, and Improved-

ART-1 M2. ART-1 using M1 provides a smaller number of misclassifications

than ART-1 with M2. Moreover, Improved-ART-1 with M1 has fewer misclas-

sifications than Improved-ART-1 adopting M2, even this much less than ART-1

using M1. Therefore, binary conversion M1 has been chosen for Improved-ART-

1 and ART-1 for further analysis based on the various degree of perturbation,

vigilance value, and half widths.
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Figure 3.13: Change in homogeneity along with cluster ID for M-1 and M-2 of
Improved-ART-1.

3.5.4. Comparison between ART-1 and Improved-ART-1

with M1

In this analysis, a comparison has been illustrated between two best techniques

considering ART-1 and Improved-ART-1 using binary conversion M1. Figure

3.16 shows the comparison in terms of misclassification, homogeneity, and aver-

age distance. It is seen that the number of misclassifications of ART-1 is nearly

99 % higher than Improved ART-1. Additionally, when homogeneity and average

distance are considered performance evaluators, improved-ART-1 still shows bet-

ter results than ART-1. Therefore, Improved-ART-1 with M1 shows good quality

solutions.
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Figure 3.14: Change in average distance with cluster ID for M-1 and M-2 of
Improved-ART-1.

Figure 3.15: Change in misclassification between two methods for ART1 and
Improved-ART-1.

A projection between the expected cluster numbers and actual cluster gen-

erated by ART-1 and Improved-ART-1 using conversion method-1 has been il-

lustrated in Fig. 3.17. It is reported that the Improved-ART-1 (M1) fits and
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Figure 3.16: Comparison between ART-1 (M-1) and Improved-ART-1 (M-1).

follows the expected cluster number with an increasing number of seeds until 6

at vigilance value of 0.5, perturbation 4, and half-width 3, whereas the number of

solution per seed is 500. In contrast, ART-1 does not fit with the expected cluster

number, where it generates a higher cluster number than expected. Therefore,

this analysis is another good indicator that Improved-ART-1 (M1) can provide a

better solution than ART-1.

It is clearly noticed from the previous analysis that the Improved-ART-

1 provide good solutions in terms of binary conversion method M1. Now, the

investigation has been extended for different problem sizes (i.e., 10 objects as

problem-1 (P1), 20 objects (P2), objects 30 (P3), and objects 40 (P4) keeping

the parameters that have been mentioned in the earlier analysis unchanged for

ART-1 (M1) and Improved-ART-1 (M2). Table 3.5 shows Improved-ART-1 using
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Figure 3.17: Comparison between ART-1 and Improved-ART-1 with M1 at dif-
ferent number of seeds at vigilance value 0.5.

M1 provides a good solution for every problem size. Less misclassification, higher

homogeneity, less average distance, and exact cluster number which matches with

no of seeds have been achieved.

3.5.5. Effect of Half-Width on Performance for Improved-

ART-1 using M1

The comparative study has been further extended by examining the changing

effect of half-width considering four problem sizes for Improved-ART-1 with M1

to determine a half-width range where ART will provide the best results. All the

other parameters are kept the same for this analysis. Here, the expected number

of clusters is 5 as the number of seeds for this problem is 5. It is noticed from

Table 3.6 that only one cluster is generated when the half-width is more than
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5 for the 1st problem size (10 objects), which is less than the expected cluster

number (5). It means that with the increment of the half-width size, all solutions

are becoming identical and must be discarded. Hence, the misclassification is also

decreasing with increasing half-width. Therefore, it can be stated for problem 1

that the optimal range of half-width is between 1 ∼ 4. Likewise, for problem 2,

which is consists of 20 objects, problem 3 with 30 objects, and problem 4 of 40

objects, the range for half-width is 1 ∼ 4, 1 ∼ 5, and 0 ∼ 5, respectively. In

addition, it is noticed that half-width is proportional to the problem size. It is

vital to take the optimal half-width for getting quality solutions. Furthermore,

this analysis also validated that the half-width that is randomly selected (3) for

40 objects at the very beginning is within the range, which is giving us the best

solutions.

3.5.6. Effect of Degree of Perturbation on Improved ART-

1 using M1

In this analysis, the effect of changing the degree of perturbation on Improved-

ART-1, considering M1 for 40 objects, has been studied. Other parameters such

as vigilance value 0.5, half-width 3, number of seeds 5, solution per seed 500

are considered. Figure 3.18 shows the behavior change of Improved-ART-1 (M1)

by varying the degree of perturbation in terms of misclassification. It can be

stated that the misclassification number is increasing with the increment of the

degree of perturbation. Additionally, this graph indicates that misclassification

with respect to the degree of perturbation is a proportional performance evalu-

ator. Moreover, there is a big jump in the misclassification when the degree of

perturbation increases beyond 10. As the lowest misclassification is expected for

the solutions; therefore, the degree of perturbation must be minimal in order to

obtain the best solution from ART-1.
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Figure 3.18: change in misclassification as a function of degree of perturbation
for Improved-ART-1 using conversion methods M1.

Figure 3.19 represents the sensitivity in terms of incremental rate in per-

centage of homogeneity and average distance with the degree of perturbation for

Improved-ART-1 (M1). The incremental rate of both homogeneity and average

distance increases with an increasing degree of perturbation. However, it is evi-

dent that the changing rate of homogeneity is very slow compared to the degree

of perturbation. It is worth mentioning from the analysis that homogeneity is

less sensitive than average distance on the degree of perturbation. The change

in average distance is higher than the homogeneity with the degree of perturba-

tion, which also indicates that homogeneity is a good indicator to evaluate the

performance of ART-1, which is less dependent on the degree of perturbation.
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Figure 3.19: Change Homogeneity and average distance with degree of perturba-
tion for Improved-ART-1

3.5.7. Effect of Vigilance Value on Improved-ART-1 with

M1

Table 3.7 shows the details of performance analysis of varying vigilance parameter

on Improved-ART-1 for 40 objects and keeping other parameters the same as fixed

before. It is noticed that number of clusters, homogeneity, and average distance

are almost identical for vigilance value ranging from 0.1 to 0.7. Therefore, it can

be said that Improved-ART-1 (M1) is less sensitive on vigilance value, which is

a very good indicator of choosing Improved-ART-1 over ART-1.
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Table 3.7: Performance analysis for Improved-ART-1 (M1) considering 40 objects

for different vigilance value.

Vigilance value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

No of cluster 4 5 5 5 5 5 5 9

No of member 500 490 500 500 500 500 500 250

Homogeneity 70 80 99 99 99 99 99 49

Min Distance 14 11 5 5 5 5 5 35

Max Distance 73 78 80 80 80 80 84 78

Avg Distance 26 24 21 22 21 21 21 49

Since vigilance value has less effect on Improved-ART-1; therefore, the same

analysis has been performed to determine the dependency of vigilance value on

ART-1 (M1) (see Table 3.8). Table 3.8 shows that other than the number of

clusters, homogeneity, and average distance vary with different vigilance values.

It indicates that ART-1 (M1) highly sensitive and dependent on vigilance value.

Table 3.8: Performance analysis for ART-1 (M1) considering 40 objects for dif-

ferent vigilance value.

Vigilance value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

No of cluster 8 9 9 9 9 9 9 9

No of member 278 250 278 271 250 250 250 250

Homogeneity 46 50 107 58 42 45 47 49

Min Distance 33 32 41 33 38 36 38 35

Max Distance 72 73 80 81 73 72 76 78

Avg Distance 110 44 54 46 49 48 50 49
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Here, another most important factor, i.e., misclassification, has been con-

sidered to verify ART’s dependency on vigilance value. Figure 3.20 illustrates

a comparison between ART-1 and Improved-ART-1, where misclassification is

changing with vigilance value. As it is noticed that ART-1 is varying drastically

with increasing vigilance value, whereas Improved ART-1 is behaving relatively

stable between 0.3 to 0.7 for 40 objects, half-width 3, number of seeds 5, degree

of perturbation 4. Therefore, Improved-ART-1 is less sensitive to vigilance value

than ART-1.

Figure 3.20: Change in number of misclassification with vigilance parameter for
Improved-ART-1 for 40 objects.
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3.6. Conclusion

The work presented in that chapter shows two binary conversion techniques us-

ing ordered permutations sequences. These new binary conversion techniques

can be potential alternatives that can be successfully used for any ANN and op-

timization techniques where binary input is required. In addition, the proposed

binary conversion methods have been numerically analyzed based on introduced

performance evaluators that include misclassification, average distance, and ho-

mogeneity for both ART-1 and Improved-ART-1. The results show that binary

conversion method-1 (M1) is comparatively better than methods-2 (M2) in both

ART-1 and Improved-ART-1. Additionally, It is identified that the Improved-

ART-1 using M1 outperforms ART-1.
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ANN Guided Genetic Algorithm

In the previous chapter, we have proposed that Improved-ART-1 outperforms

while considering introduced binary conversion method-1. In this chapter, we

have presented a technique for discriminating and clustering ordered permutations

using ANN, which can be applied to develop a neural network-guided metaheuris-

tic algorithm to solve complex problems. In the real world, many problems are

having this kind of attribute. Typical examples include traveling salesman prob-

lems, flow shop scheduling, single row facility layout, and many other quadratic

assignment problems. Therefore, we will consider a flexible flow shop scheduling

problem among the other various problems by adopting the proposed Improved-

ART-1 neural network with binary conversion method-1 guided GA. Besides, the

detailed architecture of Improved-ART-1-guided GA has been presented.

In this chapter, at first, we have discussed a flexible flow shop scheduling

problem; then, a detailed of GA has been described by presenting mathematical

formulation, where solution representation, fitness evaluation, assignment rule,

genetic operators, which include selection operator, crossover operator, and mu-

tation operator are deliberated. Afterward, the architecture of Improved-ART-1

neural network-guided GA has been elaborated.
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4.1. Flexible Flow Shop Scheduling

Flow shop scheduling problem (FSP) is an alternative technique in a manufactur-

ing scheduling environment where a number of jobs are processed by an identical

flow pattern on a specific number of machines. A flexible flow shop scheduling

problem (FFSP) is a multi-stage manufacturing system where the stages are ar-

ranged in a line or u-shaped layout. Each stage can have more than one unrelated

parallel machines. Parts get processed by moving from one stage to the next in

a unidirectional manner. Moreover, FFSP is the generalization of the classical

and simple flow shop scheduling problem with parallel machines at each stage

(Morton and Pentico, 1993). FFSP is referred to as a group of machines con-

nected in parallel and arranged into a number of stages coupled in series. There

are a number of identical machines at each step, and one job is processed at a

time in each machine at most. FFSP sometimes is also known as hybrid FSP,

blended FSP, and multi-stage scheduling (Tang, L-X and Wu, 2002). Over the

last three and a half decades, many researchers have studied the FFSP problem

due to avoiding excessive use of physical resources and getting reasonable and

efficient schedules in the manufacturing and production industries.

Different algorithms have been considered for FFSP since the 1990s. Brah

and Hunsucker (1991) adopts Branch-and-Bound algorithm to reduce the makespan

for FSP. Since FFSP is an NP-hard type problem, it is sometimes difficult to solve

in polynomial times; therefore, heuristic optimization algorithms have been intro-

duced to solve NP-hard type problems to achieve a near-optimum solution. Pan

et al. (2008) developed a multi-object heuristic algorithm for flexible line schedul-

ing without considering process waiting time.Khalouli et al. (2010) adopted an

ant colony optimization technique to optimize the delay in hybrid FFSP. Akrami

et al. (2006) considered GA and tabu search in FFSP to obtain a near-optimal

solution. According to the statistics stated in the literature review chapter, GA
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is dominating as an optimization algorithm, and the number of research papers

have been exponentially published over the years. Besides, there is also a tendency

to combine ANN and GA as a hybrid approach for FFSP for further optimiza-

tion. Hence, a number of researches have been found where ANN was considered

with GA to get the near-optimal solution for FFSP (Azadeh et al., 2019; Rezaeian

et al., 2011; Akyol, 2004). Therefore, in this work, we have proposed ANN guided

GA for FFSP.

4.2. Mathematical Formulation

Here, we have presented the details of mathematical formulation for the mixed-

integer linear programming (MILP) model and problem description with neces-

sary assumptions. The main attributes are acquired from (Defersha and Chen,

2012b; Ruiz et al., 2008), where lot streaming was considered. However, in this

particular case, lot streaming has been removed.

4.2.1. Assumption and Problem Description

The mathematical formulation has been considered for the FFSP problem, which

consists of several stages to process multiple jobs. According to the FFSP, a

known number of machines in each stage are connected in parallel, and each stage

is connected in series. It means a job from a given stage can be allocated to one

of the machines for processing. Besides, there is a sequence-dependent setup time

for each job to process on each entitled machine. This sequence-dependent setup

time may be estimated or unestimated on different stages. A machine processes

each job at most at a time. The processing sequence and the assignment of these

jobs on each allocated machine at each stage need to be determined where the

objective function is to minimize the completion time of processing the last job

in the sequence to optimize the makespan.
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4.2.2. Notations

We have defined various notations to present the mathematical model considered

from (Defersha and Chen, 2012b). These notations are explained as follows:

Indexes and Input Data

I Total number of stages where the stages are indexed by i or l =

1, 2, ..., I

Mi Total number of machines in stage i where the machines are denoted

by m = 1, 2, ...,Mi

N Total number of jobs where the jobs are represnted by n or p =

1, 2, ..., N

Pn A set of pairs of stages (l, i) for job n, i.e., the processing of job n in

stage l is followed by its processing in stage i

Tn,m,i Total processing time for one unit of job n on machine m in stage i

Qn Batch size of job n

Rm,i Number of maximum production runs of machine m in stage i where

the production runs are indexed by r or u = 1, 2, ...., Rm,i

Sm,i,n,p Setup time on machine m in stage i for processing job n following the

processing of job p on this machine; if n = p, the setup may be called

minor setup

An,i A binary data equal to 1 if setup of job n in stage i is attached

(non-anticipatory), or 0 if this setup is detached setup (anticipatory)

Bn,i A binary data equal to 1 if job n needs processing in stage i, otherwise

0
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Dn,m,i A binary data equal to 1 if job n can be processed on machine m in

stage i, otherwise 0; Dn,m,i ≤ Bn,i

Fm,i The release date of machine m in stage i

Ω Large positive number

Variables

Continuous Variables:

cn,i Completion time of the job n from stage i

ĉr,m,i Completion time of the rth run of machine m in stage i

Binary Variables:

xr,m,i,n Binary variable which takes the value 1 if the rth run on machine m

in stage i is for the job n, 0 otherwise,

zr,m,i A binary variable which equal to 1 if the rth potential run of machine

m in stage i has been assigned a job to process, 0 otherwise,

cmax Makespan of the schedule.

4.2.3. MILP Model

The objective function and the constraints of the MILP mathematical model for

the FFSP problem are given below:
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Minimize:

Z = cmax (4.1)

where. Z defines the objectives.

Subject to:

ĉr,m,i ≥ cn,i + Ω · xr,m,i,n − Ω ; ∀(r,m, i, n) (4.2)

ĉr,m,i ≤ cn,i − Ω · xr,m,i,n + Ω ; ∀(r,m, i, n) (4.3)

ĉ1,m,i −Qn · Tn,m,i − Sm,i,n,0 − Ω · x1,m,i,n + Ω ≥ Fm,i ;∀(m, i, n) (4.4)

ĉr,m,i −Qn · Tn,m,i − Sm,i,n,p − Ω(xr−1,m,i,p + xr,m,i,n) + 2Ω ≥ ĉr−1,m,i ;

∀(r,m, i, n, p)|r>1 (4.5)

ĉ1,m,i −Qn · Tn,m,i − Sm,i,n,0 · An,i − Ω · (xu,k,l,n + x1,m,i,j,n) + 2Ω ≥ ĉu,k,l ;

∀(u, k,m, l, i, n)|(l, i) ∈ Pn (4.6)

ĉr,m,i −Qn · Tn,m,i − Sm,i,n,p · An,i − Ω(xr−1,m,i,p + xu,k,l,n + xr,m,i,n) + 3Ω ≥ ĉu,k,l ;

∀(u, r, k,m, l, i, n, p)|(l, i) ∈ Pn, r>1 (4.7)

N∑
n=1

xr,m,i,n = zr,m,i ; ∀(r,m, i) (4.8)
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zr+1,m,i ≤ zr,m,i ; ∀(r,m, i)|r < Rm,i (4.9)

Mi∑
m=1

Rm,i∑
r=1

xr,m,i,n = Bn,i ; ∀(i, n) (4.10)

xr,m,i,n ≤ Dn,m,i ; ∀(r,m, i, n) (4.11)

cmax ≥ cn,i ; ∀(n, i) (4.12)

xr,m,i,n, zr,m,i, and are binary (4.13)

The objective function in Eq. (4.1) is to minimize the schedule’s makespan,

which is equal to the completion time of the last job processed in the system.

The constraints in Eqs. (4.2) and (4.3) together state that the completion time

of the job n in stage i is equal to the completion time of the rth run of machine m

in stage i if this production run is assigned to that particular job. The starting

time of the setup for the first run (r = 1) of machine m in stage i is given by

ĉ1,m,i−Qn×Tn,m,i−Sm,i,n,0 if the job n is assigned to this first run. This starting

time cannot be less than the machine’s release date, as enforced by the constraint

in Eq. (4.4). The constraint in Eq. (4.5) is to enforce the requirement that the

setup of any production run r > 1 of a given machine cannot be started before

the completion time of run r − 1 of that machine. The constraint in Eq. (4.6)

states that for any pair of stages (l, i) ∈ Pn, the setup or the actual processing of

the first run on machine m in stage i may not be started before the completion

time of run u of machine k in stage l, depending on whether the setup of product

type n in stage i is non-anticipatory or anticipatory. This constraint is applied

if run u of machine k in stage l and that of the first run of machine m in stage

i are both assigned to the job n. The constraint in Eq. (4.7) is similar to that
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in Eq. (4.6) except Eq. (4.7) is for run r > 1 of machine m in stage i. In

this case, the sequence-dependent setup time has to be considered by taking into

account the type of job that was processed in run r − 1 of machine m in stage

i. The constraint in Eq. (4.8) controls the logical relations among the binary

variables xr,m,i,j,n, and zr,m,i. The constraint in Eq. (4.9) is to enforce the logic

that production runs r+1 of a given machine can be assigned to a job if and only

if run r of that machine is already assigned to another job. If job n is positive and

it requires processing in stage i, then it should be assigned to one of the eligible

machine in stage i. This is enforced by the constraints in Eqs. (4.10) and (4.11).

Eq. (4.12) states that the makespan of the schedule, cmax, is greater or equal to

the completion time of any job on any stage. At optimality, cmax takes the value

of the completion time of the last job to be processed in the system. Eq. (4.13)

is the integrality requirement.

4.3. Pure Genetic Algorithm

Genetic algorithm (GA) is one of the powerful search-based optimization tools

which mimics the principle of genetics and natural selecting to find a near-optimal

solution. GA is a branch of evolutionary computational algorithms. If the GA is

not integrated with other algorithms or techniques, then it is said pure GA.

A basic flow chart of GA is presented in Fig.4.1. GA usually starts its

process by randomly generating sets of solution strings known as the initial pop-

ulation. Each solution string of the population is defined as a chromosome, and

each content of the chromosome is known as a gene (see Fig. 4.2). The pattern

of gene organization in the chromosome is defined as solution encoding. After

that, the fitness evaluation is calculated once the random generation of the initial

population is finished. In the end, individual fitness is sorted and selected for
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mating. Crossover and mutation are applied, and this process continues until a

stopping condition is obtained or convergence is achieved.

Figure 4.1: A basic flow chart of GA.

Figure 4.2: Schematic presentation of GA structure.

In this section, we have adapted the GA algorithm for FFSP problems

from Defersha and Chen (2012b); Ruiz et al. (2008) to determine the optimal
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or near-optimal solutions. Moreover, we have discussed solution representation

of encoding, fitness evaluation, and operators that includes selection operator,

crossover operator, and mutation operator.

4.3.1. Solution Representation

Solution representation is significant since the success and failure of implement-

ing GA is mostly dependent on it (Yilmaz Eroglu and K¨oksal, 2014). Therefore,

solution representation is a critical stage in GA. Sometimes the solution rep-

resentation is referred to as solution encoding, where each solution string will

be encoded. Holland (1975) stated that in order to implement the GA suc-

cessfully, it is necessary to design the solution encoding correctly. Binary-based

and permutation-based are the two widely used solution encoding methods. The

binary-based encoding includes only 0s and 1s, whereas permutation-based coding

includes a series of numbers. The permutation-based encoding is very popular,

particularly in machine scheduling problems.

For FFSP, a simple permutation-based encoding has been considered for the

chromosomes. Such simple encoding has been adopted to guide the assignment

and processing sequencing of the jobs on the parallel machines at every stage

using some form of heuristics or priority rules. Figure 4.3 presents the solution

representation of the proposed GA where we assume ten jobs in a randomly

generated permutation (i.e., 3, 4, 1, 2, 9, 10, 6, 8, 7, 5). Each chromosome

shows a permutation π of N jobs where N is the total number of jobs. In this

chromosome, π(s) is the gene at the sth location, and it is a numeric value equal

to the indices of the job at that location. For example, in Fig.4.3, when π(s)

equals to 1 then it represents job 3 whereas π(2) represents job 4 and so on.
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Figure 4.3: Solution representation.

4.3.2. Fitness Evaluation

Once the initial population is generated and all the chromosomes are encoded,

it is required to decode to find out the makespan. This makespan is considered

the fitness value of the chromosome. The aim is to obtain better fitness value as

it gives lower makespan. Therefore, in order to calculate the best makespan for

assignment and process sequencing of our proposed FFSP, we have considered an

assignment rule adopted by (Defersha and Chen, 2012b; Ruiz and Maroto, 2006)

by adjusting few things according to our problem statement. The assignment

rules are adjusted from the literature as: (i) considering attached and detached

setup time; (ii) release date of machines; (iii) skip some stages for certain jobs.

Now, if we consider job n that is allocated for a machine m in stage i then the

completion time cn,i is going to be calculated by:

Case 1: If job n is considered as the first job to be assigned on machine m and

stage i is the first stage for this job n, then cn,i becomes Fm,i+Sm,i,n,0+Qn ·Tn,m,i.

Case 2: If job p is the last job that is assigned on machine m and i is the first

stage to be visited for job n, then cn,i becomes cp,i + Sm,i,n,p +Qn · Tn,m,i.

Case 3: If job n is the first job to be assigned on machine m and this job n has

to visit stage l right away before visits stage i, then cn,i becomes max{Fm,i + (1−

An,i) · Sm,i,n,0; cn,l}+Qn · Tn,m,i + An,i · Sm,i,n,0.

Case 4: If job p is the last job to be assigned on machine m, and job n has to

visit stage l instantly before visits stage i, then cn,i becomes max{cp,i +(1−An,i) ·

Sm,i,n,p; cn,l}+Qn · Tn,m,i + An,i · Sm,i,n,p.
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Assignment Rule

In assignment rule, we are considering sequence-dependent setup time, processing

times of different units on parallelly connected machines, machine release date,

and machine eligibility in order to calculate the completion time of each job in π

that visits all the stages. We have adopted this assignment rule from the detailed

work of (Ruiz and Maroto, 2006). The basic steps of this assignment rule are

given as follows:

Step 1. Decode the sizes of each job for the considered chromosome and get the

permutation π from the chromosome (as shown in Fig. 4.3). Initialize

s = 1 and i = 1.

Step 2. Set n = π(s).

Step 3. If Qn>0, go to Step 4; else go to Step 7.

Step 4. If Bn,i = 1, go to Step 5; else go to Step 6.

Step 5. Assign job n to one of the available machine m in stage i that can

result in the earliest completion time cn,i of this job in this stage.

Step 6. If i<I, set i = i+ 1 and go to Step 4; else go to Step 7.

Step 7. If s<N , set s = s+ 1 and go to Step 2; else go to Step 8.

Step 8. Calculate cmax = max∀(n,i) cn,i. Here, cmax defines the smallest makespan/completion

time of all jobs proceesed in the system of considered chromosome.

4.3.3. Genetic Operators

Once we have each chromosome’s fitness value, then the next step is to choose

the best fitness value. GA operators develop a more promising solution from the

initial population to replace the less promising solution. Therefore, this is an
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important stage in GA. There are basically three operators, such as selection,

crossover, and mutation operators, that take part in this process.

4.3.3.1 Selection Operator

The selection operator is the first operator used for reproduction, which means

this operator selects the chromosome, that will take part in the next iteration

in GA. There are many selection operators used in GA. Sivanandam and Deepa

(2007) stated that the selection operators’ main objective is to determine the best

fitness solution string that will reproduce a new solution string with enhanced

fitness. The selection operator takes part first in operation before crossover and

mutation. In this thesis work, we have considered k-way tournament and roulette

wheel-based on linear ranking section operators. The individual k is chosen ran-

domly in k-way tournament and can be adjusted. The k individual with the

highest fitness value becomes the winner because it has the smallest complete

time/makespan. This process is continued until the number of chosen individuals

is equal to the size of the population.

In a roulette wheel based on linear ranking selection, the following steps are

considered to adopt this operator in GA:

Step 1. Determine the fitness value of each solution string in the population.

Step 2. Sort out the population’s solutions strings according to its fitness value

and then rank them.

Step 3. The selection probability is fixed according to its rank for each of the

chromosome.

Step 4. After that, all the chromosomes are accommodated on the roulette wheel

according to their ranks.

Step 5. Each chromosome is assigned a specific segment in the wheel. This

segment is proportional to its respective rank value. The higher the value of the
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rank, the bigger the segment size in the wheel is.

Step 6. After placing all the fitness values, the wheel is virtually rotated. The

selection process is completed when this rotation stops at a particular segment,

which represents a specific fitness value of a solution string in the population.

This selection process is continued until the required segment is selected. The

segment with high rank has more probability to be selected in this process.

4.3.3.2 Crossover Operator

Once the selection operator finishes its selection, the new population’s chromo-

some is randomly paired by crossover. The crossover operator is widely used

in GA. A crossover operator is applied to each new pair of the chromosome to

mix its features and form a new child with a high fitness value (Sivanandam and

Deepa, 2007; Defersha and Chen, 2012b; Talbi, 2009). There are different types

of crossover operators considered in the literature (Defersha and Chen, 2012a).

In this work, we have adopted a single-point crossover (SPC). Figure 4.4

presents SPC-1, where the exchange took place at the left-hand side. However,

this exchange will be done on the right-hand side in SPC-2. The crossover oper-

ation has been accomplished in the following manner:

Step 1. Firstly, the crossover point is arbitrarily chosen from each parent. Then,

all genes from the left-hand side of the crossover point of both parents are copied

to generate two respective child and genes from the right side of the crossover

point will be removed (see Fig. 4.4 (a)).

Step 2. The childs are interchanged between the parents i.e., child 1 goes to

parent 2 and child 2 comes to parent 1. At last, the missing jobs are placed in

their relative order of the other parent (see Fig. 4.4 (b)).
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Figure 4.4: Presentation of single point crossover-1.

4.3.3.3 Mutation Operator

The mutation operator is another genetic operator and is deployed to the newly

formed child after crossover operation. It is also known as a perturbation oper-

ator. The mutation operator changes a little bit of the new child chromosomes

to achieve a better result. Many mutation operators are used in GA, such as

swap mutation, shift mutation, flip mutation, bit string mutation, scramble mu-

tation, inversion mutation, Random Operation Assignment Mutation (ROAM),

Intelligent Operations Assignment Mutation (IOAM), Operations Sequence Shift

Mutation (OSSM)(Defersha and Chen, 2012a).

In our work, we have used multi-shift mutation and multi-swap mutation.

In swap mutation, we have randomly chosen two positions from the chromosome

and then interchange its value. In Fig. 4.5, we have randomly selected 2 and 3,

and after swapping, these 2 and 3 are interchanged their place. Swap mutation

is widely used in permutation-based encoding.

Figure 4.5: An example of swap mutation.
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Figure 4.6 illustrates a simple example of shift mutation. In shift mutation,

we have randomly chosen two positions from the chromosome. Then one of the

positions is placed after another chosen position, and the rest positions will be

shifted accordingly.

Figure 4.6: An example of shift mutation.

4.4. Proposed ANN-guided GA

Here, we are going to propose an architecture for developing ANN-guided GA.

The Improved-ART-1 using binary conversion M1 has been considered as ANN

here since Improved-ART-1 with M1 shows better performance. Figure 4.7 shows

the architecture of the proposed ANN-guided GA to solve any problem whose so-

lution can be represented as an ordered permutation. For example, flow shop

scheduling, traveling salesman problem, single row facility layout, etc. can be the

proposed ANN-guided GA technique’s protentional application fields. The archi-

tecture has three major components: (1) Genetic Algorithm, (2) Improved-ART-1

Neural Network, and (3) Solution Warehouse/Cluster Management. GA evolves

a population of solutions, in which each individual is an ordered permutation. It

then periodically (every certain number of generations) sends a copy of the entire

population of solutions to the ART module. As each solution passes through the

ART module, it is first converted to a binary vector using our proposed binary

conversion method-1 and then presented to the Improved-ART-1 neural network.

The ART neural network assigns a cluster-ID to each individual.
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Once each individual is assigned a cluster-ID, the population is sent to the

Solution Warehouse/Cluster Management (SWCM) module. SWCM places each

individual from the incoming pollution in its respective cluster and dynamically

inserts it based on its fitness value. The more fit individuals are placed at the top

of the cluster. Here, it is important to mention that each cluster in the SWCM

is a double linked list having an iterator and an insertion mechanism. Thus,

automatic sorting is accomplished with minimal computational effort. Moreover,

SWCM will not store an individual solution if it is not unique. To this end, clus-

ters in SWCM do not contain duplicates. In each cycle of communication of the

three modules (GA, ANN, and SWCM), the SWCM flags a cluster if it absorbs a

large percentage of the incoming population. If a cluster is flagged for more than

a specified number of times, SWCM will send a signal to the GA to penalize in-

dividuals that belong to that flagged cluster. The penalty is being accomplished

by replacing the individual solution that belongs to a repeatedly flagged cluster

by a randomly generated individual. If new clusters are not being created and

all the clusters are flagged, SWCM will reset the flag counter of each cluster to

zero, and the search will continue in a similar manner until another reset is needed.

The intervention of GA by SWCM stated above will prevent the algorithm

from stagnating in a given region of the search space. Hence, the intervention pro-

motes exploration of the solution space. However, whenever exploitation around

the best solutions is needed, the SWCM sends the best individual from clusters

having small average makespan to the GA and will stop flagging clusters until it

is time to restart exploration.
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GA
ART
ANN

…

GA sends population 
of solution to ART 

periodically

ART ANN Identifies 
the cluster to which 

each solution belongs 

Solution Warehouse and Cluster Management

C1 C2 C3 C4 C

Cluster management sends 
signals to the GA to indicate 

which individuals to be penalize 
because they belong to a cluster 

that is flagged many times 

Figure 4.7: Architecture of the Improved-ART-1 ANN-guided GA.
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Numerical Investigation

Noticeable efforts have been made to develop Artificial Neural Network (ANN)

guided metaheuristics, predominantly Genetic algorithm (GA), over the last few

decades, which can be a potential alternative to traditional optimization tech-

niques for complex problems. Since literature is limited on ANN-guided GA in

manufacturing; besides, no literature is found on potential applications in ART

neural network-guided GA. Therefore in this chapter, we would like to present

the computational performance of the proposed algorithm, i.e., ART-guided GA

using binary conversion method 1 in order to address the FFSP. Furthermore,

we have presented a comparison between pure GA and Branch-and-Cut (BC)

algorithm using IBM ILOG CPLEX solver for a small prototype problem. In

the end, a comparison has been made between the pure GA and the proposed

ART-guided GA algorithm for a series of large problems to prove the effective-

ness of proposed algorithms. The following sections will give more details of the

investigated results.
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5.1. Prototype Problem

Initially, a small prototype example of FFSP is considered for the MILP model.

This prototype problem consists of eight jobs (n) that need to be processed in

a total of four stages (i) using a maximum of two machines (m) in each stage.

Table 5.1, 5.2, and 5.3 show the details of the small problem considered for FFSP.

For instance, according to Table 5.1, each stage is assigned two parallel machines,

i.e., the work assignment can be done using one of the machines depending on the

calculated optimum processing time. We have also taken into account of machine

release date Fm,i in the proposed prototype problem. Machine release date is

important in the production environment (Ruiz et al., 2008) since the selection

of the available machine can be influenced by the release date.

Table 5.1: A small example of case study consists of two machines and four stages.

Stage Number of Machine Release date of machine m

(i) parallel machine (Mi) (m) at stage i (Fm,i)

1 2 1 0

2 40

2 2 1 40

2 80

3 2 1 0

2 120

4 2 1 80

2 240

Table 5.2 illustrates the processing time required by the machines, where

a total of eight jobs have been considered with various batch sizes that need to

be completed at different stages. For example, job 1 (n) is completed in three

stages (i.e., stage 1, 2, 4, and skipped stage 3), which involves three operations

(o) considering a batch size (Qn) of 20. Here, An,i indicates the state of the
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machine as a setup property. If An,i is 1 then this setup is called attached or non-

anticipatory. It also indicates that the machine setup will be determined once

the job comes up at the machine. On the other hand, when An,i is 0, it is called

detached or anticipatory, which indicates that the setup of the machine must be

completed before arriving of the job at the machine. In the proposed case study,

we have considered both attached and detached setup conditions. The data for

the sequence-dependent setup time of each eligible machine for different jobs at

various stages are presented in Table 5.3 and Table 5.4.
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Table 5.2: The case study includes eight jobs with different batch sizes and

considered processing time for each eligible machine.

Job Batch size Operation Stage Setup Property Processing time

(n) (Qn) (o) (i) (An,i) on eligible machine, (m), (m,Tn,m,i)

1 20 1 1 0 (1, 6)

2 2 1 (1, 4)(2, 3.5)

3 4 0 (1, 6)(2, 6.5)

2 50 1 1 0 (1, 4.5)(2, 4)

2 2 1 (1, 6.5)(2, 5.5)

3 3 1 (1, 6.5)(2, 6.5)

3 20 1 1 1 (1, 3.5)(2, 4)

2 2 0 (1, 3)(2, 3)

3 3 1 (1, 3)(2, 4.5)

4 4 1 (2, 5.5)

4 20 1 1 1 (1, 4)(2, 3)

2 2 0 (1, 4.5)(2, 4)

3 4 0 (2, 3.5)

5 40 1 1 0 (1, 4)(2, 3)

2 2 1 (1, 3)(2, 4.5)

3 3 0 (1, 3.5)(2, 4)

4 4 1 (1, 5)

6 50 1 1 1 (1, 4)

2 2 1 (1, 5)(2, 5.5)

3 3 0 (1, 5.5)(2, 6.5)

7 30 1 1 0 (1, 5)(2, 6)

2 2 1 (1, 6.5)(2, 5.5)

3 4 1 (1, 3)

8 30 1 1 1 (1, 6.5)(2, 6.5)

2 2 0 (1, 3.5)(2, 3.5)

3 3 1 (1, 5)(2, 5)

4 4 0 (1, 5)(2, 6.5)
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5.2. Typical Solution

A typical solution representation of the proposed prototype problem is illustrated

in Fig. 5.1. The first row (numbered as 1, 2, ...,8) indicates the location of the

gene of the chromosome. The solution encoding in Fig. 5.1 will be decoded

using the decoding procedure described in chapter 4 (section 4.3.2). Besides, the

completion time of FFSP will also be calculated based on the fitness evaluation

rules explained in section 4.3.2 of chapter 4.
 

Location (s) 

1 2 3 4 5 6 7 8 

Jobs (n) 

1 8 5 3 2 6 4 7 

 

 

 

 

Figure 5.1: A typical solution representation for FFSP.

An example of the GA decoding procedure for the solution representation

is presented in Table 5.5 and Table 5.6. Table 5.1, 5.2, and 5.3 are considered for

the decoding procedure. The details of the GA decoding procedure that includes

four cases (Case 1 to Case 4) is described in chapter 4 in section 4.3.2. At the end,

the total completion time of each job at four different stages completed by each

machine can be calculated until all the jobs are assigned and processed. Table 5.7

presents the completion time of each job completed at four stages using machine

m1 and machine m2, and the color indicates which machine completes the jobs

faster.

Besides, Figure 5.2 shows a pictorial presentation of the Gantt chart of the

schedule corresponding to the solution presented in Fig 5.1. Gantt chart indi-

cates that the feature of the stated prototype problem, which needs a maximum

makespan to complete the whole operation, is 1835 minutes. In the Gantt chart,

there are some jobs where An,i is 0, which indicates that the setup time of that

particular job in that stage can be started earlier if possible before completion of
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the corresponding job from the previous stage. According to this, the setup time

of job n7 on machine m1 and job n8 on machine m2 at stage i2 , job n5 and job n6

at stage i3 on machine m1 and machine m2 respectively, and job n1 on machine

m1 and job n4 on machine m2 at stage i4 have been started earlier.

Table 5.5: Partial illustration of GA decoding steps for the solution representation
in Fig. 5.1.

s n i m

1 1 1 1 Step 1: This is the 1st stage for n1 and the 1st job to
be processed on this machine , according to the conditions,
Case 1 will be considered ; Step 2: C1,1=F1,1+S1,1,1,0+Q1

× T1,1,1=0 + 120 + (20× 6) = 240 min
2 Machine is not eligible for n1

Decision: m1 is considered at this stage for n1 where comple-
tion time is 240 min.

2 1 Step 1: This is the 1st job assignd on this machine at
stage i2, according to the condition Case 3 is applied;
Step 2: C1,2=max{F1,2+(1-A1,2) × S1,2,1,0;C1,1}+Q1 ×
T1,1,2+A1,2 × S1,2,1,0=max{40+(1-1) × 100; C1,1}+20 × 4+1
×100=max{40;240}+180=420 min

2 Step 1: This is the 1st job assignd on this machine
at stage i2, according to the condition Case 3 is ap-
plied; Step 2: C1,2=max{F2,1+(1-A1,2) × S2,2,1,0;C1,1}+Q1

× T1,2,2+A1,2 × S2,2,1,0=max{80+(1-1)× 120; C1,1}+20×
3.5+1× 120=max{80;240}+190=430 min
Decision: Since m1 takes less time than m2 therefore the
completion time will be 460 min.

3 1 Machine is not required
2 Machine is not required

4 1 Step 1: This is the 1st job assignd on this machine at
stage i4, according to the condition, Case 3 is applied;
Step 2: C1,4=max{F1,4+(1-A1,4) × S1,4,1,0;C1,2}+Q1 ×
T1,1,4+A1,4 × S1,4,1,0=max{80+(1-0)× 100;C1,2}+20× 6+0×
100=max{180;420}+120=540 min

2 Step 1: This is the 1st job assignd on this machine at
stage i4, according to the condition, Case 3 is applied;
Step 2: C1,4=max{F2,4+(1-A1,4) × S2,4,1,0;C1,2}+Q1 ×
T1,2,4+A1,4 × S2,4,1,0=max{240+(1-0) × 40; C1,2}+20 ×
6.5+0 × 40=max{240;420}+130=550 min
Decision: Since m1 takes less time than m2 therefore the
completion time 540 minutes. will be chosen.

This decoding process will be continued in the next Table 5.6 for job 8.
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Table 5.6: Continuation of Table 5.5 for GA decoding steps of job 8 (n=8).

s n i m

2 8 1 1 Step 1: This is the 1st stage for n8 but not the 1st job for
this machine , according to the conditions, Case 2 will be
considered ; Step 2: C8,1=C1,1+S1,1,1,1+Q8 × T8,1,1=240 +
60 + (30× 6.5) = 495 min

2 Step 1: This is the 1st stage for n8 and the 1st job to be
processed on this machine, according to the conditions, Case
1 will be considered ; Step 2: C8,1=F2,1+S2,1,8,0+Q8 ×
T8,1,1=315 min
Decision: m2 is considered at this stage for n8 where comple-
tion time is 315 min.

2 1 Step 1: This is neither the 1st stage for n8 nor the 1st job to
be processed on this machine at stage i2, according to the con-
ditions, Case 4 is applied; Step 2: C8,2=max{C1,2+(1-A8,2)
× S1,2,8,1;C8,1}+Q8 × T8,1,2+A8,2 × S1,2,8,1=max{420+(1-0)
× 320; C8,1}+30 × 3.5+0 ×320=max{420;315}+425=845 min

2 Step 1: This is the 1st job assignd on this machine at stage
i2, according to the condition, Case 3 is applied; Step 2:
C8,2=max{F2,2+(1-A8,2) × S2,2,8,0;C1,2}+Q8 × T8,2,2+A8,2 ×
S2,2,8,0=420 min
Decision: Since m2 takes less time than m1 therefore the
completion time will be 420 min.

3 1 According to the conditions, Case 3 is applied, where,
C8,3=max{F1,3+(1-A8,3) × S1,3,8,0;C8,2}+Q8 × T8,1,3+A8,3 ×
S1,3,8,0=690 min

2 According to the conditions, Case 3 is applied, where,
C8,3=max{F2,3+(1-A8,3) × S2,3,8,0;C8,2}+Q8 × T8,2,3+A8,3 ×
S2,3,8,0=650 min
Decision: Since m2 takes less time than m1 therefore the
completion time will be 650 min.

4 1 According to the conditions, Case 4 is applied, where,
C8,4=max{C1,4+(1-A8,4) × S1,4,8,1;C8,3}+Q8 × T8,1,4+A8,4 ×
S1,4,8,1= 990 min

2 According to the conditions, Case 3 is applied, where,
C8,4=max{F2,4+(1-A8,4) × S2,4,8,0;C8,4}+Q8 × T8,2,4+A8,4 ×
S2,4,8,0=845 min
Decision: Since m2 takes less time than m1 therefore the
completion time 845 minutes will be chosen.

This decoding process will be continued until all the jobs are assigned at each stage.
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Table 5.7: Completion time of each job that is processed by each machine at four
stages.

Jobs (n) Machines (m)
Stages (i)

1 2 3 4

1 1 Case 1: 240 Case 3: 420 NR Case 3: 540
2 NE Case 3: 430 NR Case 3: 550

8 1 Case 2: 495 Case 4: 845 Case 3: 690 Case 4: 990
2 Case 2: 315 Case 3: 420 Case 3: 650 Case 3: 845

5 1 Case 2: 540 Case 4: 795 Case 3: 935 Case 4: 1435
2 Case 2: 535 Case 4: 1095 Case 4: 1030 NE

3 1 Case 2: 410 Case 4: 975 Case 4: 1195 NE
2 Case 2: 875 Case 4:800 Case 4: 1130 Case 4: 1400

2 1 Case 2: 875 Case 4: 1480 Case 4: 1835 NR
2 Case 2: 855 Case 4: 1470 Case 4: 2005 NR

6 1 Case 2: 810 Case 4: 1160 Case 4: 2330 NR
2 NE Case 4: 2145 Case 4: 1695 NR

4 1 Case 2: 1090 Case 4: 1650 NR NE
2 Case 2: 1315 Case 4: 1590 NR Case 4: 1790

7 1 Case 2: 1540 Case 4: 1415 NR Case 4: 1825
2 Case 2: 1175 Case 4: 1815 NR NE

m1 m2 NE = Not Eligible; NR = Not Required; Times in min.

5.3. Solution of Prototype Problem (GA vs CPLEX)

A comparative study has been presented between pure GA using C++ and

Branch-and-Cut(BC) algorithm using the IBM ILOG CPLEX solver package for

the small-sized prototype problem. The compilation has been done on a 64-bit

operating system-based computer with a speed of 3.5 GHz and has a RAM of

16GB. Figure 5.3 shows the results from the compilation of CPLEX solver for

the prototype problem. It is evident from the graph that CPLEX solver could

not find an optimum solution even after 69 hours of compilation and provide

the results with a makespan of 1875 minutes where the optimality gap between

the best integer solution and lower bound is 0.389. Figure 5.4 shows the per-

formance of the pure GA, where it takes nearly 30 mili-seconds for convergence

to determine the near-optimal solution with a makespan of 1785 minutes. The

convergence graph gradually becomes stable in steady condition, which is the
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Figure 5.2: Gantt chart of machine scheduling for prototype problem solution.

optimal solution in that case. Therefore, it can be said that GA outperforms the

BC algorithm in terms of computational time.
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Figure 5.3: Optimality graph for prototype problem using BC CPLEX solver.
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Figure 5.4: Convergence graph for prototype problem using pure GA.
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5.4. GA and ANN-guided GA for Large Size

Problems

It is evident from the results according to the section 5.3 that pure GA outper-

forms in terms of completion time compared to BC using IBM ILOG CPLEX

solver for the small prototype problem. Therefore, in this section, we are going

to compare between pure GA and our proposed algorithm ART neural network-

guided GA for large size problems. Besides, six large problems have been con-

sidered for this comparative study, and these problems have been generated and

solved using the 1st 20 test runs considering only Pure GA without ANN inter-

vention and the last 20 with ANN-guided GA. Table 5.8 presents the general fea-

tures of the large size problems with considered number of jobs, number of stages,

maximum and minimum number of parallel machines, maximum and minimum

number of batch sizes for each problem.

Table 5.8: Feautres of considered large size problems.

Problem No. No of Jobs No of Stages No of Parallel Machine No of Batch Size

(n) (i) (m) (Qn)

1 20 10 4 to 2 30 to 60

2 6 10 5 to 2 20 to 50

3 60 20 4 to 3 20 to 50

4 90 6 4 to 3 20 to 50

5 90 1 6 to 4 20 to 50

6 90 8 8 to 4 20 to 50

We present six case studies (i.e., large problems) where we apply the pro-

posed ANN-guided GA and pure GA to solve a flexible flow shop scheduling

problem (FFSP) with sequence-dependent setup time. As we know that FFSP is
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a multi-stage manufacturing system where the stages are arranged in a line or u-

shaped layout. Each stage can have more than one unrelated parallel machines.

Parts get processed by moving from one stage to the next in a unidirectional

manner. The problem is to determine an effective sequence of the jobs at the

first stage so that all the jobs can be completed in a minimal amount of time

(makespan). Thus, the solution to the problem is an ordered list of jobs. Each

ordered list can be assigned a measure of goodness, which is makespan. Figure

5.5-(a) and -(b) show the convergence graph of the genetic algorithm without and

with ANN-intervention, respectively. As it can be seen in this convergence graph,

the GA with ANN found a solution with a lower makespan. The experiment was

repeated twenty times by changing the seed of the random number gyrator. In

many of the trials, the ANN-guided GA identifies solutions with lower makespan

as it is depicted in Figure 5.6.

Similarly, the other five large problems have been investigated in order to

find out the converges and makespan for GA without and with ANN algorithms.

It is clearly noticeable from the analysis that the convergence graph patterns for

the GA algorithm are similar irrespective of the problem sizes. Furthermore, Fig-

ure 5.7, 5.8, 5.9, 5.10, and 5.11 prove that ANN-guided GA completes the process

with lower makespan compare to pure GA in all considered problem sizes in each

twenty trials. Therefore, the proposed ART neural network-guided GA performs

better than pure GA.

The previous section and this result clarify that GA is capable of finding a

solution in less time, but it cannot be guaranteed to have an optimal solution.

The results observed from Figure 5.12 and 5.13 show that GA is exploring only

certain cluster, which indicates the exploitation of GA because of previously

explored regions by GA make searching option blind without exploring other
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Figure 5.5: A typical convergence graphs (Blue - Worse Solution; Orange - Av-
erage; Gray - Good; Yellow - Best so far)

clusters where optimal solutions can be found. This is one of the limitations of

GA. The proposed algorithm, ANN-guided GA architecture, combines GA, ART,

and SWCM to overcome this problem of pure GA. According to section 4.4, the

intervention of GA by SWCM will prevent the algorithm from stagnating in a

given region of the search space. Hence, the intervention promotes exploration of

the solution space to make other clusters to find the optimal solution. Therefore,
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Figure 5.6: Comparison over multiple trails between GA and ANN-guided GA
for problem 1.

the results show that ANN-guided GA has more exploration ability than pure

GA and can find an optimal solution from searching almost all clusters.

Figure 5.12 and 5.13 illustrates comparison between the allocation of mem-

bers in percentage for different large-size problems considered in Table 5.8 apply-

ing in pure GA and Improved ART-1 neural network-guided GA. These figures

show how the cluster absorbs a large number of populations with and without

ANN intervention. After 100,000 iterations, a total number of 330,000 popula-

tions are allocated in the different regions based on the applied algorithms. The

bar graphs in Figure 5.12 show the number of members (%) that go to each

cluster. From Figure 5.12 (a), (c), and (e), we can observe that one of the clus-

ters absorbs a large percentage of the total population where many of them have

almost nothing comparatively. Even some clusters have not been explored. In

contrast, Figure 5.12 (b), (d), and (f) depict that most of the clusters have a
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Figure 5.7: Comparison over multiple trails between GA and ANN-guided GA
for problem 2.

Figure 5.8: Comparison over multiple trails between GA and ANN-guided GA
for problem 3.
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Figure 5.9: Comparison over multiple trails between GA and ANN-guided GA
for problem 4.

Figure 5.10: Comparison over multiple trails between GA and ANN-guided GA
for problem 5.
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Figure 5.11: Comparison over multiple trails between GA and ANN-guided GA
for problem 6.

reasonable number of members, which also indicates that many of the clusters

have been searched thoroughly due to the intervention of ANN.

Figure 5.13 provides further insight into the analysis considering different

problems where we can clearly see how pure GA has been stuck in one region

of the search space. GA without ANN is being exploited in a certain cluster,

i.e., GA is getting trapped in some regions where it is not clear that the result

provided by GA is actually optimal one or we have still possibility to have a

better result from other clusters which are unexplored yet (as shown in Fig. 5.13

(a), (c), and (e)). However, GA with ANN intervention, it is noticed that ANN

helps to explore almost all the clusters of the search space (see in Fig. 5.13 (b),

(d), and (f)).
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Figure 5.12: Formation of cluster by allocating the members based on the fitness
value by GA (a), (c), (e) and ANN-guided GA (b), (d), (f) for problems 1, 3, and
5 respectively mentioned in Table 5.8.
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Figure 5.13: Allocation of population with and without intervation of ANN. (a),
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109



Chapter 6

Research Outline

6.1. Summary and Conclusion

The research aims to improve makespan by adopting Improved ART-1-guided

GA for flexible flow shop scheduling problems. As a summary of this thesis, we

can conclude each chapter in the following ways, which will clearly describe our

contribution and findings in this research.

Chapter 2: A comprehensive literature survey has been conducted in the field of

GA and ANN-based manufacturing scheduling problems. This survey is focused

on the hybridization of GA, especially with ANN. It is evident from the review

that literature is limited in ANN-guided GA in metaheuristic applications, which

motives us to do further research in this field.

Chapter 3: In this chapter, we have presented a technique for discriminat-

ing and clustering ordered permutation using ART-1 and Improved-ART-1. In

the process, we introduced a new technique for converting ordered permutations

to binary vectors to cluster them using ART-1. The proposed binary conversion

methods are evaluated under varying three proposed performance indicators, i.e.,
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misclassification, cluster homogeneity, and average distance. The performances

of ART-1 and Improved-ART-1 have been investigated and compared based on

the proposed binary conversion methods.

Chapter 4: Here, we have illustrated the details of the pure GA algorithm

for the flexible flow shop scheduling problem (FFSP). In addition, a complete

picture of the proposed ART-1 neural network guided GA architecture has been

presented.

Chapter 5: In this chapter, we have analyzed the computational performance

of the proposed algorithm, i.e., ART-guided GA adopting our developed binary

conversion method to address the FFSP. Furthermore, we have presented a com-

parison between pure GA and a typical branch-and-cut algorithm for a small

prototype problem where GA shows better performance. Finally, a comparison is

made between pure GA and the proposed ART-guided GA algorithms using bi-

nary conversion method 1 (M1) for a series of large problems where ANN-guided

GA outperforms compared to pure GA in every case. It proves the competence

of our proposed algorithm for FFSP.

6.2. Future Research and Recommendations

The proposed ART-1 ANN-guided GA deals with manufacturing scheduling prob-

lems based on the binary matrix, which does not reflect the information regarding

production volume, operation time, and operation sequence. Hence, alternative

ANN can be considered to handle continuous real-time data (not only 0s and 1s)

for compilation. We can focus on other ANN, such as Kohonen self-organizing

map, and ART-2, can be focused on metaheuristic applications.
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Here, our developed binary conversion based ART-1 neural network-guided

GA is considered for FFSP. However, this proposed algorithm can also be applied

to other problems, including job shop and other scheduling problems whose so-

lution may not be pure permutation.

The future work also focuses on applying the architecture of ANN-Guided

GA to non-permutation-based problems by developing equivalent binary repre-

sentation techniques to their solutions. Besides, the application area of our de-

veloped ANN-guided GA should not be only limited to manufacturing scheduling

problems but also can be considered for other fields such as, image recognition,

pattern recognition, mobile robot control, signature verification, medical diagno-

sis, etc.
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